

Urban Transport Research

Issue

44

1988

**Communication on research aimed at
improving transport conditions in cities,
towns and other built-up areas**

310

Published by the Federal Minister of Transport,
Transport Policy Department, Bonn-Bad Godesberg

Hoermann-Verlag, 8670 Hof/Saale

Following the appropriation of additional Federal funds for the development of transport in the communities, the Federal Ministry of Transport has commissioned research and study assignments since 1967 the results of which are intended to contribute to the improvement of their transport conditions. The annual research programme is established with the participation of those Federal Ministries which have a special interest in this field of research, of the Länder and local authorities as well as of experts engaged in scientific and practical work.

The series entitled "Urban Transport Research – Communications on research aimed at improving transport conditions in cities, towns and other built-up-areas" ("Blue Series") is intended to present to the public a summary of the results of the Ministry's Urban Transport Research programmes.

Part I contains the abstracts which the research institutes have annexed to their final reports. The abstracts are intended to provide information on the field of research under study and on the most important results of the research work, and to stimulate and encourage practical applications. Conversely, the Federal Ministry of Transport is hoping for suggestions and impulses for research from those who are engaged in practical work.

Part II contains a survey of all research and study assignments on urban transport commissioned so far by the Federal Ministry of Transport the abstracts of which are published in this series. This survey is kept up to date.

The abstracts supplied by the research institutes are published unchanged and without comment. Extended abstracts or the full texts of the results of research projects which are deemed to be of special or current importance are published as special issues. See cover inside.

The issues of the series are distributed according to a mailing list of the Federal Ministry of Transport. Additional copies may be ordered from Hoermann-Verlag, POB 1560, D-8670 Hof/Saale.

A limited number of the full reports has been handed over by the research institutes to the Federal Ministry of Transport. Research reports which are not published are kept available for those who are directly interested by Section A 24 of the Federal Ministry of Transport, POB 20 01 00, D-5300 Bonn 2. **The reply to Inquiries is only possible if the full project no. (e.g. 28/73 or 70 016/78 – see "Part B Survey . . .") is stated.**

Part I: Abstracts of Research Reports

1 Planning methods and planning

1.1 Town, country and regional planning

Project 77025/81

Quantification of the separating effects of traffic construction measures in urban areas on social relations and urban structures

Prof. Dr.-Ing. Harder, Hemmingen

Completed April 1985

Problem definition

People have generally become sensitive to ecologically harmful effects of the construction of traffic facilities. This attitude has resulted in the demand for methods which can be used for estimating the separating effects of road spaces, particularly in urban areas.

The construction of traffic facilities may produce positive or negative effects on social relations and urban structures if existing separating effects can be reduced by redirecting traffic (avoidance of "back-street routes", etc.) or by structural facilities, or, conversely, if such segregation effects arise.

It is the aim of this research project to ascertain the above mentioned effects, particularly those occurring in road spaces which are not part of the network of highways and major roads. For this purpose, criteria are to be developed which make it possible to ascertain and assess the following effects:

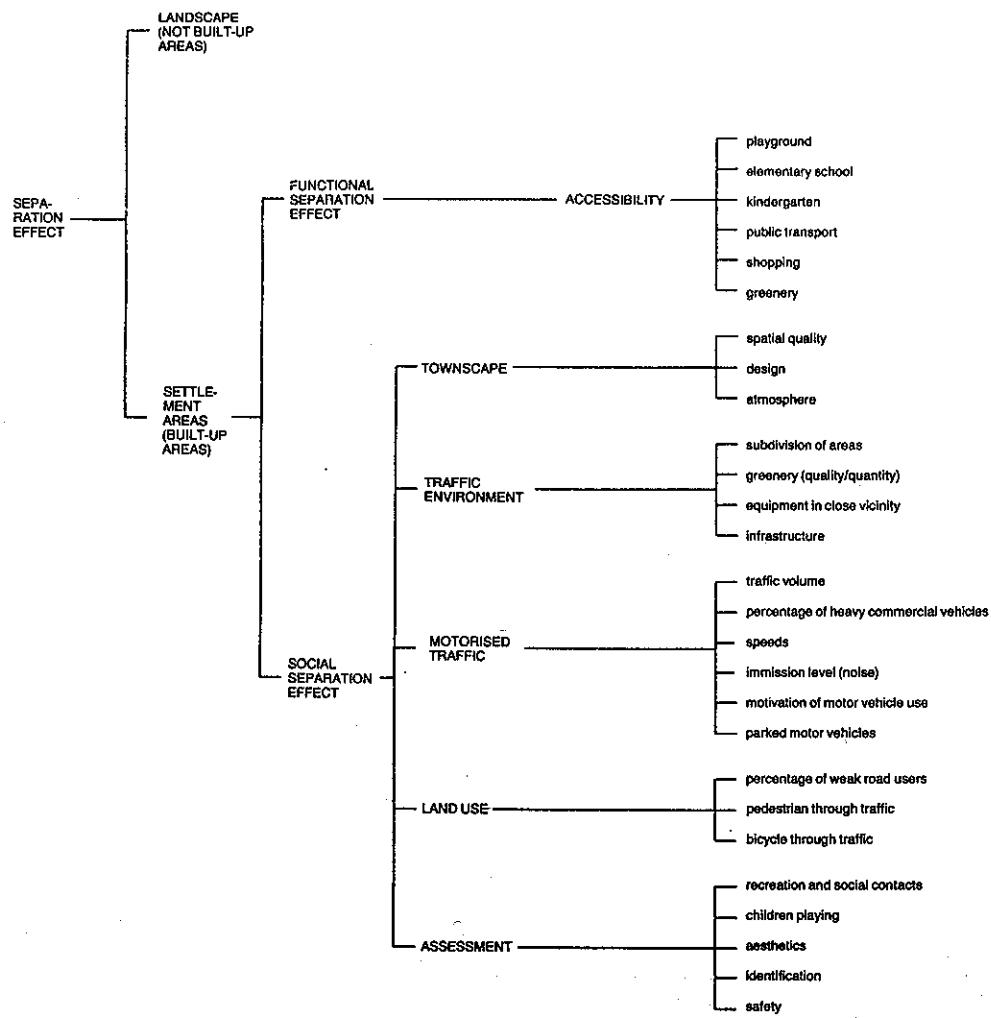
- visual separation effects (eye contacts, experiencing space, etc.)
- functional separation effects (accessibility, interconnected areas, etc.)
- separation effects on social relations (neighbourhoods, communication structure, etc.)

In addition, the present research assignment is designed to develop methods which allow for the extant socio-empirical studies in the realm of urban sociology as well as for the present status of the debate on economic evaluation methods.

Comprehensive studies on urban sociology are available which were the result of representative surveys, observations, functional and structural stock-taking and other study methods. To begin with, these studies will be used for selecting and defining controlling factors (indicators), which are relevant for evaluation purposes, and will serve as a basis for developing evaluation approaches.

The envisaged work programme is mainly concentrated on the development of a self-contained procedure for quantifying the separating effects of traffic construction measures in urban areas on social relations and urban structures. Existing approaches to ascertaining functional separation effects will, in modified form, be integrated into the procedure.

Method


The construction of a traffic facility may entail development benefits provided the accessibility of certain destinations is improved. At the same time, deterioration of the O-D relationships of non-motorised road users may occur, which result in time losses. The definition of destinations comprises installations and facilities for the provision of goods and services of the public and of the private sector, which can be reached on foot. The time losses which are encountered on the way to these destinations and which are caused by a traffic facility are established in the form of separation values. The impairment of accessibility is called functional separation effect.

At the same time, heavy traffic volumes may impair, or in extreme cases even prevent, the social functions of street spaces (play, outdoor recreation, social contacts, communication, etc.). This impairment of the outdoor recreation and social contacts function of road spaces and the impairment of non-motorised road uses caused by heavy traffic volumes are called social separation effect. Social separation effects are simultaneously caused by an insufficient integration of road spaces into the urban environment owing to inadequate design. They are identified via indicators such as the space provided for play, outdoor recreation and social contacts, equipment, outdoor furniture and greenery, spatial qualities, etc..

Impairments of urban skylines, townscapes, striking prospects, etc., by traffic facilities are called visual separation effects. No special procedure for recording and quantifying these visual separating effects was developed in the context of this research project. However, numerous indicators serving to ascertain the social separation effect are simultaneously suitable for ascertaining visual impairments of townscapes.

In the context of the procedure developed here, assessments and feelings of the non-motorised users of road spaces constitute a necessary complement of the data base obtained from transport and town planning. A set of survey instruments, based on the results of a pretest and of a representative survey, was developed for interviewing the road space users.

Figure 1 shows those aspects of the separation effect of traffic facilities which have been taken into consideration in the course of the present study.

Figure 1: Aspects of the separation effect

An additive process is used to aggregate the individual separation values in such a way that they form a separation factor. This separation factor, ascertained by means of the method developed here, constitutes a measuring unit defining the separating effects of traffic facilities. Figure 2 shows the basic structure of this method.

1.2 General transport plans

Project 77039/85

Pilot study for the purpose of establishing extrapolation factors for short-term traffic counts in urban road networks

Institut für Verkehrswesen, Prof. Dr.-Ing. Brilon,
Ruhr-Universität Bochum

Completed October 1987

Problem definition

Ever since traffic surveys have been carried out, efforts have been made time and again to ascertain the percentage of peak hour traffic in the daily traffic volume in a representative manner or, conversely, to gross up to the daily traffic volume from short-term traffic counts. Numerous studies have been devoted to roads which the Federal Government has the obligation to construct and maintain. These studies have established regularities in the patterns of daily traffic flow and subsequently developed extrapolation models. However, these results cannot be used directly for characterising traffic flow on urban roads where greatly divergent trip purpose groups coincide. Each of these groups exhibits different patterns of daily traffic flow. For this reason, the daily flow lines counted may differ widely depending on the location of the census point in the street network. In the present study, which covers urban roads, an approach to ascertaining conversion factors for traffic volumes of different reference intervals is developed.

This being a pilot study, it is not intended to present comprehensively corroborated calculation data. The aim of the study is rather to explore the available data base, to develop and test evaluation procedures, and to evaluate a limited set of data as far as possible on a trial basis. These evaluation results will be used to estimate the reliability with which extrapolation factors for urban roads can basically be indicated.

Study method

In accordance with the objective of the study, data recorded by permanent counters in several cities were to be used. Technically speaking, measurements can be taken on a permanent basis as part of vehicle-actuated traffic signal control. In view of these considerations, numerous cities which have powerful traffic computers were approached in writing with the request to cooperate on the project, whereupon six cities made data available. Thus it was possible to

consider altogether 183 patterns of daily traffic sections during the evaluation made for the study.

Statistical methods were used to analyse the data according to the following criteria:

- typification of the various flow lines for road network functions
- analysis of the percentage of the maximum as a function of Average Daily Traffic (ADT)
- possibilities of extrapolation making allowances between the two directions
- monitoring of the weekly and monthly fluctuation
- analysis of the typical pattern of traffic flow indication of extrapolation factors.

Study results

The survey among the cities showed that all the technical capability of using permanent control of traffic signal control. However, little use is made of this. On the other hand, the cities are ready to use these capabilities for the benefit of scientific studies. Local agencies are very much interested in ascertaining extrapolation factors. Only the city of Hamburg has a comprehensive network of constantly operated permanent traffic control on all important major roads between intersections.

It is even possible to indicate extrapolation factors. Preliminary data pertaining to radial roads made it possible to Owing to the substantial variance of the data, indispensable for roads which have other network functions. The equivocal delimitation of different groups of traffic flow line and network function of a road can only be made on the basis of a more comprehensive survey than the main study. However, it is reasonable to make some conclusions to result from the use of multivariate statistical methods in this case.

The following detailed results are worth mentioning:

- The counting interval which is particularly suitable for extrapolation base is the four-hour interval from 7 a.m. to 11 a.m.
- The percentage of peak hour traffic in the daily traffic is particularly constant on radial roads, and is not dependent of the ADT.
- The percentage of the actual peak hour traffic is dependent of the ADT. On urban roads, it is generally expected to fall between 4 p.m. and 5 p.m. in case of the inbound traffic on radial roads between 8 a.m. and 9 a.m.
- Basic differences in the extrapolation factors for the workdays of the week were not observed. The differences in the four-hour group in the ADT depend on the day of the week.

Practical conclusions

Where urban roads are concerned, the conversion factors between the ADT and peak hour traffic volume depend on the day of the week.

Possibilities of improving a regional railway line of Deutsche Bundesbahn (DB) with special consideration of providing attractive park and ride facilities, as exemplified by the Limburg — Frankfurt/Wiesbaden DB line

**SNV Studiengesellschaft Nahverkehr mbH,
Hamburg**

Completed July 1988

Problem definition

Regional passenger transport by rail is generally in a difficult situation today. In many cases, the number of passengers is declining. Cost increases also worsen the economic efficiency of these lines. Owing to a highly uneven distribution of the demand for travel throughout the day, the vehicle fleets are filled to capacity for very short periods only.

In rural areas, feeder transport to the railway stations is of special importance because a great many passengers live in towns or villages which are not endowed with a station. Compared with urban areas, the network of bus lines is wide-meshed and the number of trips offered is small. On the other hand, the availability of cars is very high. If the level of service by rail does not adequately meet the passengers' expectations, there is the risk that the private car is not only used as a feeder for obtaining access to the station, but rather for the entire journey. The Limburg—Frankfurt/Wiesbaden railway line is used as an example to show how, on the outskirts of an agglomeration, an attractive supply of transport services with special consideration of park and ride (P + R) feeder traffic is able to counteract this trend and to attract additional passengers to the railway.

Study method

After taking stock of the settlement structure and the supply of transport, traffic surveys were conducted to ascertain detailed data on the demand for short-distance public transport, particularly P + R travel, and on the attainable potential demand. An overall concept, including proposed improvements, was prepared, which covers the supply of trips by rail, P + R facilities, bus feeder lines and marketing. The expected future demand for travel was forecast.

Study results

At Niedernhausen, after a distance of 38 km, the Limburg — Frankfurt/Wiesbaden railway bifurcates into the Niedernhausen — Frankfurt (32 km) and Niedernhausen — Wiesbaden (20 km) branches.

The Limburg — Niedernhausen section was electrified in the 1986/87 winter timetable. Thus a double track is electrified throughout and is available between Limburg (70 km). The Niedernhausen — Frankfurt section is the area served by the Frankfurt integrated transit (FVV); line S 2 of the rail rapid transit operates there.

Trains run at irregular intervals. During the early morning hours, mostly through trains operate from Limburg via Wiesbaden. During normal traffic hours, however, from Limburg to Wiesbaden or operate between Niedernhausen only, whereas only a small number of semi-fast through trains serve the Limburg — Frankfurt section. The rolling stock used are suburban coaches, so-called S units, of which operate as push-pull trains.

According to a traffic survey carried out on 14th May 1987, approximately 6,550 passengers per day and direction between Limburg and Niedernhausen; 61% of them travel 4,000 passengers per day, travelled during the morning in the direction of Frankfurt/Wiesbaden.

Limburg, which is the administrative seat of a rural district, accounted for about 2,900 passengers per day travelling to Frankfurt/Wiesbaden, and was thus the preeminent station used for boarding. The Eschhofen, Niederselters, Bad Camberg and Idstein stations each account for 800 boarding passengers per day and direction, while three stations accounted for 175 to 390 boarding passengers.

Frankfurt main station and Frankfurt Höchst attract 17%, respectively, of all alighting passengers and are outstanding among all stations used for alighting. All passengers used Wiesbaden main station for alighting; one in four passengers alight at stations along the Niedernhausen section.

The catchment areas of the stations extend up to 20 km towards the West, North and East of the railway line, even into the Federal Land of Rheinland-Pfalz (Rhineland-Palatinate). Catchment areas become smaller with decreasing distance from Frankfurt and Wiesbaden.

The majority of all passengers (almost 60%) walked to the station. Among the other means of feeder transport, the bus is more than 30% of the public transport passengers and has supraregional importance. Car drivers accounted for 4%, and 7% were dropped off at the station (park and ride traffic). Less than 10% used a scheduled bus, 3% came by bicycle.

The overall concept aimed at improving the supply of trips by rail constitutes the desired final stage of an attractive supply and comprises the following components:

- supply of trips by rail
- level of comfort of rail transport
- park and ride facilities
- feeder bus lines
- marketing concept.

It is based on the following conditions:

- Improvement in the supply of trips from Limburg to Wiesbaden via Niedernhausen, as well as from Limburg to Wiesbaden via Frankfurt
- adjustment to the S-Bahn (RRT) between Niedernhausen and Frankfurt (40-minute headways during the day), so that connections from/to Frankfurt are available throughout the day
- trains are running,

1.3 Individual transport plans

Project 70219/87

The development and provision of transport for large settlements

Ingenieurgruppe IVV, Aachen

Completed November 1987

About 200 — 250 large settlements were built in the Federal Republic of Germany during the sixties and seventies. They comprise approximately 500.000 — 600.000 housing units for about 1.5 million people. A large settlement may be roughly described by the following characteristics:

- > 1.000 housing units
- self-contained with high building density
- mostly flats
- uniformly planned and built accordingly
- owned by one or few major sponsoring companies
- mostly to be classified as social welfare housing
- isolated location and in most cases suburban.

The sizes of large settlements range from 1.000 to more than 20.000 housing units.

While the large settlements of the sixties and seventies originally met with general public approval, pronounced criticism has been voiced in the meantime. This criticism has been mainly directed at the nature, appointment and concentration of the flats, at the housing environment and the prevailing social problems. However, there is no overlooking the fact that this critical basic attitude has also been caused by the urban transport planning concepts, which are now perceived as unsatisfactory. The question arises whether urban transport planning is able to make a contribution towards remedying the functional deficiencies of large settlements.

Special analyses, investigations, calculations and classifications were carried out for the purpose of answering this question. They were concerned with the following issues:

- volume and nature of the demand for travel,
- required development capacity,
- target concepts of urban transport planning,
- shortcomings of development,
- concepts for measures to be taken.

Naturally, the studies were unable to cover the entire range of possibilities. Rather, they were aimed at producing generalised findings concerning present conditions which are typical of many large settlements. Exemplary practical cases were also examined.

The results obtained in the course of this study are summarised below.

1. The inhabitants of large settlements clearly travel less than comparable population groups who live in integrated urban neighbourhoods. This is mainly attributable to the leisure activities of the various age groups. While in the group of young people (15 to 17 years old) there are hardly any mobility differences with equal groups in other areas, it is obviously less attractive for the group of the 18 to 65 year-olds to pursue additional activities after having completed their compulsory activities (related to employment and business). This is all the more so as major distances have to be covered in order to reach attractions. This is the reason why mobility deficits of about 15% are found in this group as against the findings normally expected for the trip purpose "leisure time and recreation".

In the age group of the over 65 year-olds conditions are reversed. In this group, without exception, travel serves leisure-time activities and shopping purposes, with the latter also being attributable to leisure-time activities. Isolation and loneliness in large settlements presumably are the reasons why the inhabitants of these settlements are left, in search of communication and diversion, the overall mobility of this group is about 10% higher than that of comparable groups living in urban residential neighbourhoods.

The disproportionately represented group of the 18 to 20 year-olds with about 15% "mobility deficits" on the one hand, a disproportionately represented population group of the over 65 year-olds with "surpluses" of around 25% on the other hand, give rise to a mobility level which is 10% below the comparative values of urban dwellers.

Moreover, when considering non-motorised mobility (i.e. bicycle) the values found in large settlements fall considerably below those applying to integrated urban residential neighbourhoods. Again, when comparing inhabitants of large settlements with inhabitants of integrated urban residential neighbourhoods, we find three distinct groups which display different patterns of behaviour.

Non-motorised mobility is almost the same for the age groups 0 to 17 years.

However, as far as the 18 to 65 year-olds are concerned, the values of non-motorised mobility are about 30% below those of the inhabitants of integrated urban residential neighbourhoods. This is probably due to the lack of attractiveness of the neighbourhood.

In the group of older people (> 65 years), the mobility values (i.e. probably no travel by bicycle) of people living in large settlements are 40% higher than that of comparable groups elsewhere. This is probably due to the fact that the needs for communication often cannot be met by public transport, hence higher mobility on foot.

2. It is quite possible to influence the travel behaviour of people living in large settlements; this can be achieved both by a mix of land uses and by measures concerning the transport infrastructure. Thus it can be assumed that savings in travel of 20% to 30% can be obtained by a favourable mix of land uses in hitherto monostructural large settlements. This can be accompanied by a simultaneous increase in pedestrian traffic in the large settlements.

However, there are certain limitations to the possibility of influencing the travel behaviour of people living in large settlements. These are mainly measures affecting the transport infrastructure. Only 35% of the users are free with regard to their choice of mode of transport; in addition, overall conditions cannot be shaped in such a way that connections by public transport can always be provided.

2 Technical studies

2.3 Technology of transport

Project 77028/85

The safety effects of measures taken to control road traffic by traffic signals

Dr.-Ing. Heusch, Dipl.-Ing. Boesefeldt, Aachen

Completed July 1987

It was the aim of the research presented here to ascertain and assess changes in the accident pattern which were consequent on the setting up of new traffic signal installations or on a change in signal control. A survey of the literature already available on these issues revealed that a good many research results, mainly concerning accidents involving pedestrians and accidents involving vehicles turning left, are extant. Therefore this study focussed on two other key issues, namely the changes in the accident pattern before and after the setting up of a signal installation and the effects of different coordination schemes for traffic lights on road safety.

Originally the examination of accidents happening at junctions where traffic lights had been newly installed was intended to cover junctions within and outside built-up areas. The accident data concerning junctions outside built-up areas were to be gleaned from the data tapes of the Federal Laender. However, assigning these data to the junctions was only possible to such a limited extent that subsequent evaluations were restricted to accidents occurring within built-up areas. In order to find intersections suitable for study, building construction and civil engineering agencies throughout the Federal Republic of Germany were asked to report junctions which had been newly equipped with traffic signals during the past few years without a simultaneous major change in the traffic pattern observed there.

Ultimately it was possible to cover 50 junctions from 9 towns in this study. Characteristic data, concerning these junctions' construction, operation and traffic, and data from the accident reporting forms covering one year before and one year after the commissioning of the traffic lights, were collected, processed and entered into a computer. Numerous logic operations were used to integrate the data from the various universes and finally to evaluate them statistically. The first item under study were the effects which the installation of traffic lights has on safety in general, i.e. independently of certain junction characteristics. For this purpose the accident numbers and accident rates of accidents entailing consequences of varying severity were established. Subsequently the question was examined whether there are relationships between Annual Average Daily Flow (AADF), certain junction and control characteristics, and the accident pattern.

In the 173 approaches, 305 accidents had happened during the "before" period and 179 during the "after" period on workdays between 6 a.m. and 10 p.m. The provision of traffic signals primarily

helped to avoid accidents involving vehicles turning in or out. The number of accidents involving personal injury was reduced of all; it was down 61% "after" as against the level "before". Accidents involving minor material damage only decreased. Average accident costs per year and junction amounted to 151.000 "before" and DM 65.000 "after" at intersection, DM 114.000 "before" and DM 47.000 "after" at T-junctions. This amounts to an average annual saving in accident costs totalling 22.000 per approach. Accident costs both "before" and "after" go up with increasing traffic volumes, but so do simultaneous accidentings. Road type and type of land use in the surrounding area are other main factors influencing deviations from average accident rates.

These results were compiled in such a manner that a user can estimate the safety effects of traffic signals while making a choice for important junction features. Thus he is given a significant aid for deciding on a new signal installation.

In Hannover (Hanover), Düsseldorf, Köln (Cologne) and Aachen (Aix-la-Chapelle), 246 approaches at 141 junctions along roads were selected for studying the influence of different coordination schemes on the accidents happening there. In 1983 to 1985, a total of 2370 accidents occurred at those on workdays between 6.00 a.m. and 10.00 p.m.. The number of accidents involving only minor material damage was twice as high in Aachen as it was in Köln and Hannover, while it was substantially lower in Düsseldorf. In addition, the number of accidents involving severe material damage in Hannover was almost three times as high as in the other towns. For these reasons, all evaluations were carried out both cumulatively and separately for all four junction types. All accident factors (accident numbers, rates, costs and consequences) are clearly higher at intersections than at T-junctions. More accidents and higher accident numbers and costs clearly go up with increasing junction complexity, whereas accident rates and cost rates tend to fall. Of all the junction features recorded, it is only approach lengths, total number of lanes and number of left-turning lanes which are obviously related to the accidents happening at the respective junctions. In addition, all four accident factors are lower at junctions with traffic light control than at those with fixed time operation.

Only a sub-universe of 1672 accidents was used for examining the influence of signal coordination. This sub-universe comprised the accidents caused by drivers going straight ahead, because it was assumed that they were more strongly affected by signal coordination than accidents involving turning manoeuvres. Other additional factors are relevant, such as the volume of oncoming traffic, the volume of pedestrian traffic and the kind of safeguard measures protecting turning vehicles. A difference was made between the so-called basic coordination cases which denote the kind of influence of the platoon arriving from the nearest upstream junction on the junction, such as "head of platoon arrives on red". The lowest accident rates and lowest cost rates were ascertained for the case of the entire vehicle platoon arriving on red, which is followed by the case where all vehicles pass without obstruction during the green period. Both situations are clear-cut. The most unfavourable result was obtained in the coordination cases where the green period at the respective junction is so short that both the head and tail of the platoon arrive on red.

In addition, when considering staggering times and average progression speeds v_{pa} for the beginning of the green period, it emerges that accident cost rates are above average for v_{pa} between 40 and 60 kph, and below average for higher or lower speeds. Hence, coordination schemes under which the progression speed at the beginning of the green period is equal to the permissible maximum speed, and is thus often desirable from the traffic engineering point of view, do not at the same time provide maximum safety. The available data do not suggest any correlation between accident rates and the progression speed at the end of the green period.

Traffic safety

Accidents are rare events on the roads through small towns and villages, which are the subject of this study and which carry relatively small volumes of traffic. Consequently, information concerning the details of accidents, which can be derived from accident reports, cannot be fully satisfactory for the purpose of research into causes of accidents. It does not permit reliable findings to be established with regard to the link between planning and design elements on the one hand and traffic safety on the other. Generally, however, clear and/or prominent road narrowings and carriageways or sections of carriageway on which compulsory mixed use is perceptibly bound to occur presumably do not tend to present an increased accident hazard, at least not on roads through built-up areas carrying low volumes of traffic. On the other hand, road sections which are complex or which are difficult to assess with regard to their cross-sections and their routeing appear to be prone to accidents resulting from excessive speed and/or mistaken spatial appraisal.

Observations obtained by means of the traffic conflict technique have shown that

- conflicts arising at narrowings are at a controllable level and that they are unlikely to escalate into conflicts, let alone accidents, and
- sections of the road space on which carriageway surfaces are used jointly by some non-motorised road-space users on a voluntary or more or less compulsory basis should not be characterised as being dangerous, provided that it is possible to lower the hazards by reducing the speed of motor vehicle traffic.

Behaviour of non-motorised road-space users

Voluntary joint use of the carriageway approximately as it would develop on mixed-use areas is obviously more generally practised when

- the volume of motor vehicle traffic is small (up to about 250 motor vehicles/hour),
- there are few commercial vehicles (up to about 20 lorries/hour),
- motorists drive considerably at low speeds (up to about 25 kph),
- the percentage of non-motorised road space users is high and
- the road space is properly designed so that it can also satisfy use requirements other than those of traffic.

The last two criteria are, as a rule, not met on the fringes of towns but rather in attractive town centres (e.g. market place, shops).

While narrow sections of road space with compulsory joint use of the carriageway by pedestrians meet their traffic function, they do not also fulfil other requirements, namely those of non-motorised road-space users. Separate footpaths and cycle paths to carry longitudinal traffic therefore become desirable at road narrowings with growing motor vehicle volumes.

Survey among the road-space users

Joint use of carriageway areas, which is dictated by the situation of the road space, reduces the subjective sense of security on the part of non-motorised road space users. Most pedestrians would rather have a lane assigned specifically to them which should not be jointly used by motorised traffic.

Traffic safety is considered to be adversely affected by speeding motor vehicles, absent or unusable footpaths and the complexity of road space.

Roads through towns and villages where segregation is a means of raised kerbs are given better ratings than other soft segregation is attempted. Urban standards are often good and progressive and are therefore applied to roads in villages without their necessity or usefulness having been

Traffic patterns at narrow sections of road or carriageway narrowings

At carriageway narrowings that exist for a short time (e.g. caused by vehicles stopping on the carriageway), a tendency to serve to avoid encounters with other vehicles within the narrow section even when the available carriageway width would permit vehicles to pass each other safely.

The willingness to pass other vehicles within narrow road and permanent carriageway narrowings is obviously greater than within temporarily narrowed carriageway sections. This willingness will presumably go up generally as the traffic volume and the length of the narrow section/carriageway narrowings increase, in order to avoid longer waiting periods (the ready availability of space grows). There is also a dependence on the kind of carriageway delimitation and on the visual impression of the change in section. Elastic carriageway delimitations (e.g. dropped kerbs) are conducive to vehicles passing each other, since, if necessary, they can be run over to make way, without the risk of damage to rigid margins (raised kerbs, walls and the like). A reduction of carriageway width also furthers the inclination of oncoming vehicles. In such configurations, the motorist's speed and ability to make the right judgement are clearly overtaken. On the other hand, a distinct reduction of carriageway width can lead to cautious, wait-and-see behaviour.

Stopping at fairly short narrow sections and carriageway narrowings is often avoided by appropriate driving (mostly by decelerating, sometimes by accelerating).

Two-lane narrow sections where motor-assisted bicycles and cycles are used and where the oncoming lane is not sufficient are not suitable for overtaking bicycles.

In contrast to narrow sections and carriageway narrowings, traffic moving in either direction enjoys equal rights, therefore where traffic moving in one direction is granted priority. If the traffic loads are symmetrical and up to a load ratio of 1:2, this produces longer waiting times and longer waiting queues overall, but the overall stopping rates remain approximately constant.

Where the load situation is asymmetrical, priority for the vehicle stream results in more stopping processes but shorter waiting times overall.

When traffic volumes are low or medium, the use of traffic control measures results in higher stopping rates and longer waiting times.

The interdependences between the length of the narrow section, the traffic volume, the percentage of commercial vehicles and the potential case of meeting an oncoming vehicle, stopping rates and waiting times and lengths of queues are documented by the graph in Annex II.

single-lane sections (up to about 50 metres) do not produce major impairments of traffic. Wherever possible, no special traffic control measures (signs 208/308 of the StVO) should be resorted to. If one direction of traffic must nevertheless be granted priority, the direction carrying the smaller traffic volume should be selected for this purpose.

When the traffic volumes carried by through roads are small or medium-sized, traffic signals should only be used at narrow street sections/carriageway narrowings where it is not possible to see the entire length clearly.

Part 2: Design recommendations applicable to roads through village-type and urban-type built-up areas

Problem definition

Many roads through small towns and villages which coincide with primary routes do not meet the requirement that the street space in built-up areas should be fully multifunctional. For a long time, local concerns such as the building structure or the land use requirements of local residents, were only taken into account insufficiently or not at all when designing through roads. Only in recent years has a change in the relevant design principles evolved. It is, however, as yet unclear how far the design recommendations applicable to roads through villages, which are hardly disputed any longer, can also be applied to places of a more urban nature, i.e. those located near towns and cities or serving a central function in rural areas.

The mostly generalising assessment of settlement types and building structures as being either "village-like" or "urban" does not make allowance for rural areas in the vicinity of big cities. Such places have become increasingly urbanised in terms of their population, building structures and urban development concepts. In addition, the growing traffic volume, caused particularly by an increasing number of journey-to-work commuters, has influenced the design of the street space for through roads. These through roads are thus no longer comparable to those leading through genuine villages in rural areas. It is therefore logical and reasonable to show up the differences in the planning and design of through roads through village-type and urban-type built-up areas which result from the different requirements of all road users and to develop a differentiated design repertory for small towns and other built-up areas which does justice even to places that cannot be completely attributed to either category.

Comparison of use requirements and the situation in the street space of through roads in places with a village or urban character

The planning and design of the street space of through roads in villages and towns is determined by topography and building structure, as well as to a substantial extent by the requirements of all relevant user groups. Owing to the relatively low level of use requirements in places which have retained the character of villages, the space alongside the street can normally be put to mixed use. In this way, sufficient accommodation can be provided for overlapping use requirements made on the same areas. In places which are urban in nature, however, an optimum allocation of areas for all kinds of uses, which satisfies any demand arising there, is not usually possible.

The use requirements made by moving motor vehicle traffic ensue largely from the network function of the through road and the location of the town or village concerned. The influence of those fea-

ures which are related to urban planning and design the volume of trips generated or ending there and o

Speeding motor vehicles are observed on most of the under study. This is particularly true for short route and similar built-up areas.

In view of the cases of vehicles meeting/passing each other, must be allowed for when dimensioning, and with the desired quality of traffic flow, the required carriageway widths for through routes are 5.50 to 6.50 metres.

The different demands which the other user groups have on roads in villages and in towns may be summarised as follows: generally speaking, these findings are true for roads through villages and other places of a similar character:

- On the whole, less demand for kerbside parking exists. This kind, if any, exists for agricultural vehicles and farm vehicles more than for passenger cars.
- Public transport has a low trip frequency and carries few passengers.
- The volumes of bicycle and pedestrian traffic and their crossing frequencies are low.
- People are found in isolated places only, or in places of transition between public and private spaces.
- Children play throughout the entire street space.

On the other hand, the following must be considered with roads through towns and other places of an urban character:

- Heavy demand for kerbside parking, particularly for agricultural vehicles and farm vehicles.
- Public transport has higher trip frequencies and carries more passengers, particularly school children.
- The volumes of bicycle and pedestrian traffic and their crossing frequencies are higher.
- People are found throughout the entire space alongside the street, particularly in central areas and in the vicinity of residential areas.
- Playing children are rarely found, and if so, they are found in the garden areas alongside the street.

Apart from regional differences in topography and building structure, the differences in the street spaces of road through villages and towns may be summarised as follows:

In the street spaces of roads through villages and other places of a similar nature, there are usually:

- fairly large distances between buildings and between individual buildings,
- as a result of this: changing street space width in sequence of spatial sections,
- no areas of transition between open route and built-up area,
- a great many green areas in public and private gardens which contribute to spatial guidance and environment.

The street spaces of roads through towns and other places of an urban character are usually characterised by:

- high-density building with structures of a similar height,
- as a result of this: linear, uniform course of the street space,
- areas of transition on the approach to more built-up areas,

3 Economic studies

3.2 Supply (economics and technology)

Project 77036/83

The possibilities of including the cost of accidents in urban areas in the RAS-W Guidelines with special consideration to quantitative data and relationships

Prof. Dr.-Ing. Harder, Hemmingen

Completed March 1985

In the context of a preceding research assignment bearing the same title as the present assignment (Project 77066/79), comprehensive data concerning the accidents occurring in the city of Hannover (Hanover) were acquired. The present research project has been designed to examine those data with a view to establishing the extent to which network elements (route sections or intersections) can be combined in groups exhibiting the greatest possible homogeneity in terms of accident patterns. It is necessary that these groups be easily and unequivocally definable by means of traffic facilities or traffic environment characteristics.

The study is based on altogether more than 44,000 accidents recorded in the years 1976 to 1978 on 1,033 route sections and 559 intersections. This covers slightly more than 76% of the accidents which happened in the city of Hannover during that period; the total network under examination comprises more than 400 kilometres.

Detailed knowledge of local conditions made it possible to subject the data to thorough plausibility checks. Atypical network elements were excluded from the universe under study.

Subsequently the influence of all ascertained characteristics of the traffic facilities and the traffic environment on the accident pattern, specifically on the accident rate, of the route sections and intersections was systematically examined. Characteristics which exert a clear and plausible influence on the accident rate were used for breaking down the universe under study.

Following several grouping stages it was possible to break down the universe of route sections into ten subgroups and the universe of intersections into six subgroups which can easily be defined by means of traffic facility or traffic environment characteristics. The groups are defined by combinations of the following characteristics:

- network function (urban motorway, major road [if travel], residential or local road)
- type of abutting buildings
- number of lanes (for routes only)
- dual carriageway (for routes only)
- number of legs (for intersections only).

As a rule, all these characteristics can either be easily as were already known in the preliminary planning stage.

As a further working stage, the structure of the accident and consequences) within the individual groups was became apparent that taking accident severity (in terms of cost rate) into account, as opposed to the sole consideration of accident rate, results in only minor changes in the safety of individual groups. However, the use of different cost rates has a much more pronounced influence on accident costs and ranking of the various route and intersection types with their safety levels. An updating over time, and forecast of cost rates is urgently necessary whenever it is a matter of accident consequences which are not unequivocally called "accident involving casualties" or "accident involving non-casualties").

A further breakdown of the route and intersection types of traffic volumes, which was carried out with the aim of still relatively major spread of accident rates within the groups, did not produce the desired result. The links between volume and accident rate, as well as those between traffic and average accident cost, are too weak.

The economic cost of an accident is decisively determined by the consequences of accidents involving casualties. Therefore data from several big cities in the Federal Republic of Germany were compared. This comparison revealed, on the one hand, differences in the consequences of accidents reported from different cities and, on the other hand, in all areas a clear and consistent trend over time to accidents entailing less serious consequences. These facts underline the need to check whether the a model can be applied at different times and to different areas mainly by studies in towns of different sizes (small, medium and big towns).

In the last chapter of the present research assignment, a cost model is developed which is in accordance with the RAS-W and which is to be integrated into the Guidelines for the Construction of Roads, Part "Studies of Economics". The purpose of estimating the cost of accidents in built-up areas.

For the purpose of a rough estimate of benefits in the context of large-scale considerations or in the course of approximate studies, a supplementary working stage was also served to ascertain the accidents occurring on route sections and those happening at intersections. The accidents occurring at intersections account for a sizeable proportion of all accidents on a given route. For this reason, the data specified here can only give a rough indication. Ultimately, they are only valid for average lengths and distances between intersections in the city. The extent to which the findings can be applied to route sections should likewise be checked by means of comparable data from towns of different sizes.

3.3 Investments and financing

Projekt 70138/85

Review of public transport's standards of transport, operation and technology with the aim of reducing cost

Hamburg-Consult GmbH, Hamburg

Completed November 1987

In terms of methodology, the study approach proceeds in areas of work which, successively building upon each other, constitute the course of the study.

1. Differentiation of the main components of the public transport system and description of standards in close connection with the components.
2. Analysis of the cost structure of the operating branch of public transport with the aim of assigning shares in the cost to individual components.
3. Analysis of the cost-relevant standards and appraisal of potential savings.
4. Assessment of the savings effects of selected sets of standards and of their impact on passengers and staff.
5. Adoption of proposals regarding more in-depth studies of the information base existing in the field of cost-effectiveness.

2. Components of public transport and standards of transport

The tried and tested breakdown of the overall public transport systems according to system components is used as a starting point for the analysis. The standards relating to individual components or sub-components are of varying quality and topicality. To some extent, standards have been derived from laws, regulations and directives, whereas they are also founded on the value concepts of the planner or decision-maker. The evaluation of the relevant sources of transport and technology standards results in a combined assessment of current standards relating to the system components. This stock-taking serves as a basis from which development and approaches for changing standards with a view to cost-effectiveness can be set forth.

1. Problem definition and study approach

The well-known poor conditions under which public transport has to operate will not improve in the future. For this reason, local and regional authorities, as well as transport undertakings, are called upon to look for potential savings in the public transport sector in order to reduce the need for subsidies or, at least, not to let them increase any further. The idea has been propounded to lower the standards of public transport service to an economically justifiable level. To prevent passengers from switching to other modes and the staff from being placed in a worse position, it is intended to lower standards primarily where passengers and operating staff feel least affected by such a deterioration.

The standards concerning the "level of service" contain some potential for cost-effective reductions, both when defining the minimum supply during late and normal operating hours, and when fixing transport capacity during peak hours. When the task of "providing public transport as a public service" is taken into account, it appears to be unjustified to consider any further reduction in the standard of minimum service. It is possible, however, to replace minimum service by minimum demand-orientated level of service which can be realised by demand-orientated forms of supply (such as dial-a-taxi paratransit). Only that part of the supply is accountable which is actually used.

Lowered standards for dimensioning the transport capacity provided during peak hours hold out the greatest chances for success with a view to the desired cost savings, owing to their direct impact on the peak capacities which must be provided. The possible spectrum of using existing standing room capacities extends from downgrading the level of service (LS) to a very low level, e.g. LS = 45% (which means that more than every second passenger must stand during travel), to a complete utilisation of the vehicles' static carrying capacity and accommodation which would amount to about 6 persons per sqm standing room.

3.3 "Operation"

More than any other sector of public transport, the scheduling and operating of operation have been regimented by laws and regulations. For this reason, the scope for decisions by the individual enterprise is also restricted with regard to cost-effective action.

As far as safety-relevant provisions and laws are concerned, this is even intentional and necessary. In addition to the more technically and organisationally orientated laws and regulations, several regulations and agreements from the sectors of labour law and collective bargaining law must be allowed for, with a view to the effect of standards on the staff, because they incorporate, to some extent, vested social rights of the people concerned, which will not be globally called into question here. An approach to amended standards in this area is rather seen in a further development of the definition of the operating staff's occupational activities who can, with increasing use of technical aids, assume extended and more responsible functions aimed at improving passenger service.

As a result of the analysis of the standards generally prevailing in the "operation" sector, cost-effective changes can be derived which concern the following areas:

- acceleration of vehicle turn-around;
- more emphasis on the employees' and passengers' own responsibility within the issue "safety system";
- capacity-orientated flexible working hours and further development of the definition of the operating staff's occupational activities;
- flexible manpower deployment and increasing recourse to the services of third parties for meeting peak demand.

3.4 "Stop/station" and "route"

Reduced standards applying to the components "stop/station" and "route" are of special importance for the transport undertakings if they serve to cut expenditure for operating and maintaining facilities.

A potential for reducing standards is mainly seen in limiting the equipment and installations at the stops and stations to those parts which are indispensable for smooth operation.

The general aim is to reduce the depths at which stops are constructed, predominantly for the purpose of costs, but with the attendant possibility of reducing standards. This means that escalators and expensive lifts are largely dispensed with and that simplified structures contribute to minimising the cubical content of the stop.

A potential for reducing the standards applying to the transport system's rail tracks arises mainly in the section of the track proper and to some extent also the track

When the supervisory authorities determine the standards for inspections, they should increasingly make allowances for the art which is, in many fields, reflected by the use of self-monitoring facilities. In addition, the wear of components has been substantially reduced by improved materials. Instead of carrying out inspections it is also possible, for instance, to use exact stock-taking and documenting of measured data for assessing the condition of the track and the clearance gauge, and thus to restrict work to those areas where the limits of tolerance have been reached in the foreseeable future.

3.5 "Vehicles"

A survey of the relevant sources concerning the "vehicles" component revealed very little potential for changes in standards, both for rail vehicles and for coaches. Obviously the particularly well-developed type recommendations of the VÖV (Association of Transport Undertakings) concerning vehicle technology have an effect on the economic dimensioning of public transport. The cost-effective change in standards applying to vehicles is demonstrated in an exemplary manner by referring to the "ratio of seats to standing room", "maintenance" and "vehicle size in line with demand".

Potential savings by means of reduced standards for vehicle widths are realised in the new DT4 metropolitan vehicles in Hamburg. The vehicle width is 2.60 metres and the height is 2 + 2, although this means that the seat arrangement is short of the type recommendation issued by the VÖV. Dimensioning rules which are customary in Hamburg of a standard 2 + 1 seating arrangement would have an increase in vehicle deployment during peak hours. The adopted instead means that seated passenger space is somewhat cramped conditions during the peak hours.

Owing to the developments in vehicle technology over the last years, the reliability of parts and assemblies has been improved. Protection against corrosion has been improved, further reducing workshop repair capacities. From the perspective of the transport undertakings, the components in maintenance strategies over the past few years have themselves felt because, the more effectively preventive maintenance and inspection are carried out, the less the vehicles are burdened with repair jobs. The comparison of the figures for the "care", "inspection and maintenance" and "repairs" sections, as recommended by a vehicle manufacturer, and the corresponding data in the support and promotion guide of the Federal Ministry of Transport, reveals a saving in the maintenance sector (inspection, preventive maintenance) which, depending on the distance travelled and the size of the vehicle fleet, amounts to 2 to 5 work stations in the depot size of 50 to 200 vehicles, which is usual today. It is in this area that an adjustment to the new standards appears to make sense with a view to the planning of the future. This is all the more true since, in addition

COST CENTRE GROUPS															
		SALES SERVICE	OPERATING	DEPOT OPERATION	STOP/STATION OPERATION	FUEL/POWER SUPPLY	MAINT. STRUCTURES AND TRACKS	MAINT. STOP/STATIONS	MAINT. VEHICLES	MAINT. OTHER TECHNICAL EQUIPMENT	DEPRECIATION	INTEREST	GENERAL ADMINISTRATION	MISCELLANEOUS	SUM TOTAL [%]
SHARE IN [%] OF TOTAL COST	5.2	8.8	2.1	13.7	7.5	5.0	9.6	8.2	6.3	12.4	2.4	13.2	5.7	100	
METROPOLITAN RAILWAY DEPENDENT TO THE LEVEL OF n [%] on:	ADMINISTRATION	85								13	19		61	60	19
	ROUTE NETWORK		10	100	8	96	100		84	48	67				42,5
	VEHICLE FLEET		10	14				73	3	33	33	16	17	15,1	
	DISTANCE TRAVELED	15	80	86		92	4		27			23	23	23,4	
SHARE IN [%] OF TOTAL COST	4.4	27.4	2.2	0.3	5.8	11.4	1.8	17.5	2.7	10.4	3.9	8.7	3.5	100	
LRT/TRAM DEPENDENT TO THE LEVEL OF n [%] on:	ADMINISTRATION	30								20	10		42	40	10,2
	ROUTE NETWORK		5	100	10	90	100		70	30	55				21,5
	VEHICLE FLEET	10	10	40				65	10	40	45	30	30	25,2	
	DISTANCE TRAVELED	10	85	60		90	10		35		20		28	30	43,1
SHARE IN [%] OF TOTAL COST	2.0	51.1	2.0		6.8			8.7	2.9	5.1	0.5	14.5	6.4	100	
BUS DEPENDENT TO THE LEVEL OF n [%] on:	ADMINISTRATION	80								35	5		8	8	4,7
	ROUTE NETWORK		1							55	3	20			1,9
	VEHICLE FLEET	10	9	95				39	10	53	40	53	53	24,1	
	DISTANCE TRAVELED	10	90	5		100		61		39	40	39	39	69,3	

Table 1: Cost breakdown according to cost centre groups and spheres of influence

The savings potential which can be developed by combining cost percentages on the one hand, and possible changes in standards on the other, is qualitatively classified into four levels related to the total expenditure of the operation:

- no cost effects,
- minor cost effects (savings of up to 1%)
- medium cost effects (savings of up to 3%), and
- major cost effects (savings of up to 6%)

The classification shown in Table 2 is a kind of estimate prepared by experts.

5 The effects of reduced standards as exemplified by selected sets of measures

The analysis of the cost structures of the operating branches "metropolitan railway", "light rail rapid transit/tram" and "bus", as well as a preliminary appraisal of the achievable savings potential concerning the system components, have shown that reliable data concerning the effect of reduced standards on costs which are restricted to individual system components can only rarely be obtained. When the appraisal of the savings potential is subdivided according to the individual components, it cannot be ruled out that the full utilisation of this potential, by means of reduced standards concerning individual components, results in additional expenditure in the case of other sub-components. For this reason, the final economic assessment of reduced standards can ultimately only be carried out with regard to the specific cost situation of the enterprise concerned. As explained above, adequate cost accounting methods are not yet available for such decision-orientated cost accounting operations.

The cost effects of selected sets of measures involving standards, however, can also be appraised without taking into account in detail all that is involved in the costs of the entire. For this purpose, strategies for change are formulated based on the experience of the enterprises participating and which, as a rule, comprise sets of measures aiming to achieve a negative effect. While pursuing maximum cost effects, negative repercussions on passengers and staff are to be kept as far as possible. These are conflicting objectives in the case of all measures because it is only in exceptional cases that savings without any disadvantages to passengers and/or staff are achieved. Anything close to a compromise between the requirements "maximum cost savings" and "minimum negative effect" to passengers can most probably not be formulated in a valid manner and will rather vary from place to place, from enterprise to enterprise. An assessment will certainly be achieved by the implementation of measures which is a matter of monitoring efficiency. Nevertheless, a qualitative statement concerning the effects of reduced standards is assigned to each of the measures under study. Table 3 shows a compilation pertaining to the sets of measures under study.

bundle of measures	cost effects in terms of their share in the overall operating cost of the various branches of operation			effect on	
	metropolitan railway	LRRT/Tram	bus	passengers	staff
— relocation of ticket sales	●	●	●	+	+
— restructuring of customer service and information	●	●	●	+	+
— reducing the level of service during peak hours	●	●	●	-	-
— speeding up vehicles turn-arounds	○	●	●	-	+
— increasing the responsibility of staff and passengers	●	●	●	+	+
— flexible working hours (capacity orientated flexitime)	●	●	●	-	-
— flexible deployment of staff, resorting to third party services	○	●	●	-	-
— limited provision of lifts and escalators	● ¹⁾	● ¹⁾	○	-	-
— lowering of maintenance standard	●	●	○	-	-
— replacing regular service by demand-orientated service — flexible operating modes			2)	+	+

COST EFFECT

- none
- minor (up to 1%)
- medium (up to 3%)
- major (up to 6%)

EFFECT ON PASSENGERS/STAFF

- negative
- + positive

¹⁾ heavily dependent on local situation, therefore difficult to compare

²⁾ no direct cost saving as against the current situation, but essential for maintaining public transport in rural areas

Table 3: Survey of the results of the sets of measures under study

5 Specialized studies

5.1 Electronic data processing (EDP)

Project 70137/85

Cashless money transfer in the public transport sector with the help of novel means of payment

Hamburg-Consult GmbH, Hamburg

Completed August 1987

The transport enterprises are forced to rationalise and automate. For this reason, the users of short-distance public transport are increasingly obliged to acquire tickets from vending machines. This entails problems involving coins which are all the more serious when higher amounts have to be paid (e.g. for multi-ride tickets and day tickets).

Handling cash payments aboard the vehicle results in long waiting times at the stops, and thus substantial delays requiring longer vehicle turn-arounds. The effort on the part of the driver who has to do the accounting goes up with increasing amounts of cash. Transporting, counting and accounting for the coins collected by the vending machines involve considerable expenditure on the part of the transport enterprises. With fares increasing with time and the amounts to be paid going up, the problems are bound to worsen.

Vending machines which accept notes do not constitute a satisfactory solution. Apart from the fact that some passengers take a critical view of them, the risk of robbery becomes more serious when the amount of money handled grows. In addition, problems concerning the balances of the amounts due arise when notes over DM 20 and even DM 50 are accepted.

These problems can be overcome by using cashless payment methods by means of so-called "value cards" (credit cards and debit cards). The development of such means of payment as an alternative to paying by means of coins and notes has made rapid progress over the last few years. Debit and credit cards are more easily handled than cash and checks, and as a result their importance will grow. Public transport authorities cannot afford to ignore this topic without accepting a loss in attractiveness of public transport.

It is the aim of this study to use model cases involving different sales methods, branches of operation and spatial structures for examining the transport, operations and economic aspects of the potential success of using debit and credit cards instead of cash to buy public transport tickets. This is to make certain that the technological and organisational foundations for the use of cashless payments in the public transport sector are laid at an early stage.

Based on the requirements of public transport users and enterprises for the use of cashless payments in the public sector, the conditions created by the organisation and sales of the transport enterprises, and the card systems currently available, four models have been developed:

— Model A (POS)

POS (Point of Sale) is a system which makes it possible for passengers to pay with electronically scannable cards to "electronic cash registers (POS terminals) of suppliers of goods and services without handing over cash, checks or any other means of payment. For this purpose, the customer must identify himself by entering a "Personal Identity Number" (PIN). Processing is entirely computer-controlled (the card is the medium used at the present time). Model A is intended for the cashless sale of higher-priced tickets (e.g. day tickets) at vending machines or in the sales agencies of the transport enterprises.

— Model B "POS / Off-line credit card"

This model comprises a combination of model A with a credit procedure operating within certain accounting limits. It is characterised by the additional use of the EC cards as an off-line credit card for rather small amounts. For the purpose of the debit function, the card is used as an identity card only. The card number, account number and card number are read into the POS terminal, the authorisation is checked and stored together with the amount of the transaction. In order to be admitted to this model, the customer has to grant direct debit authorisation to be transported by the transport enterprise and have an appropriate entitlement mark recorded on the card. Subsequently all transactions are collected and cumulated per customer on the transport enterprise's computer. Once a previously fixed credit line or time limit is reached, the customer's bank account is debited. The off-line credit card is intended for the cashless sale of higher-priced tickets, while the POS part is used for buying higher-priced tickets.

— Model C "POS / Monofunctional wallet"

This model is based on a combination of the POS method and a debit function (monofunctional wallet). It involves an EC card which is used as a POS-usable EC card by an additional memory, which allows the holder to buy tickets from a transport enterprise. The debit portion is debited at the terminal of a bank or of the transport enterprise. Crediting to the transport enterprise is effected directly. The debit portion of the card is intended for the acquisition of single, multi-ride and day tickets, the POS part for higher-priced tickets.

— Model D "Debit card"

The concept of the transport enterprise-related debit card is basically the same as the models described above in that there is no connection with the EC card issued by banks. The cards offered by this model are issued by the transport enterprise concerned. The passenger buys the debit card at any sales outlet and uses it to pay cash.

A short evaluation of these four models comparing their characteristics from the customer and transport enterprise, as well as the possibilities of implementation, produces the following findings:

— The Model A "POS" has the advantage that customers holding an EC card can participate in the cashless transaction without any further formalities. However, owing to the high cost per transaction, it is only suitable for selling higher-priced tickets. Its implementation is possible at short notice provided that the Gesellschaft für Zahlungssysteme (GZS, Payments System) makes the necessary infrastructure available.

5.3 Miscellaneous

Project 77052/86

Optimising the operational planning of winter road maintenance in towns and villages

Institut für Verkehr, Prof. Dr.-Ing. Durth, TH Darmstadt

Completed July 1987

In the course of conducting the present research project, entitled "Optimising the operational planning of winter road maintenance in towns and villages", the winter road maintenance by local authorities, including its constraints and operational planning, was analysed, and a method for optimising operational planning was developed. The winter maintenance was analysed by means of a wide-ranging survey among municipal street-cleaning services, in which 156 towns and villages participated. The survey covered the route network, spreading materials, winter maintenance equipment, operational planning and practical application. On the basis of the survey results, detailed indications and recommendations concerning optimised operational planning of municipal winter road maintenance were developed and described in the form of recipes."

The survey results show that the increasing awareness of ecological problems has brought about a major change in municipal winter road maintenance over the past few years. More and more towns are introducing a differentiated form of winter maintenance, comprising the graduated spreading of de-icing substances and abrasive materials, and a growing percentage of "white streets", where no spreading whatsoever is applied. This differentiated winter maintenance, however, is substantially more expensive and makes much higher demands on the organisation of practical operations than the winter maintenance of earlier years did. It is precisely in this area that developments in recent years have not kept abreast of the increasing requirements.

It is true that the vehicles available to winter maintenance operators today are of a better quality (route dependence, spreading of pre-wetted salt, dual-compartment spreaders). In terms of quantity, however, they are still what they used to be 10 years ago. This means that a more demanding winter maintenance must be carried out with the same number of vehicles. Thus it is imperative to make optimum use of the existing vehicle fleet through appropriate operational planning.

It is precisely in the field of operational planning that a major deficit can be identified. Owing to closely meshed networks and numerous constraints (vehicles, predetermined directions of driving), the preparation of snow-removal and spreading schedules in towns is very difficult in its own right, but it becomes even more complicated be-

cause of the differentiation into two superimposed spreading activity (de-icing substances and abrasive materials).

Besides, route planning is still carried out without the aid of new methods (EDP) or new scientific findings (optimisation), even though such aids are available today. Snow-spreading schedules are drawn up manually in a very labour-intensive manner and are changed as little as possible over the year to avoid additional effort and expenditure. In many towns the total route lengths are ascertained, but not the distances which the vehicles cover when empty and when going to reload. These are available on real distances covered and the resulting times, which are often distributed in a highly varied way. Existing operational plans are frequently not the optimum, but could be developed for the case in question by using new methods.

The present research project is designed to close this gap. By optimising the operational planning for the municipal winter road maintenance, the survey results, which reveal the present divergent conditions existing in the various towns, a method was developed for preparing optimised snow-removal and spreading schedules with the aim of optimisation to implement the best possible winter maintenance with the means available.

The method, the working of which is described in the following, and which is broken down into individual steps, is based on optimisation methods used in business management and route planning. It proceeds from a clear presentation of the winter route network in abstract terms by means of edges ("graphs"). All the standards and constraints necessary for winter maintenance are systematically recorded and presented in graphs and/or tables.

If the route network is to be broken down anew according to levels and/or spreading materials, indications are listed as to which route to proceed and which appraisal criteria to use for such graphs.

Route planning proper starts with the formation of sub-networks in the town area, from which individual vehicle precincts are formed in accordance with the details of the existing vehicle fleet. In this first step, a subsequent essential measure is the assignment of vehicles to the individual precincts, which should be optimised. It has a substantial influence on the quality of the plans (minimising the distances travelled for reloading).

Within the precincts, optimised operating routes should be established for the individual vehicles. They should meet the constraints and contain as little dead mileage as possible. Graph theory methods are used for finding minimum distances.

The precise ascertainment and supervision not only of the areas to be covered when spreading, but also of the necessary sequences (and from the vehicle's precinct), of dead mileage (within the precinct) and of reloading trips are essential for optimised operational planning. Correspondingly, it is necessary to ensure that the vehicle route in the operation schedule, so far as possible, corresponds to the routes as fact implemented.

In addition to the drawing up of standard operating schedules, a description is given of how and when special plans can be established for extraordinary cases, such as snow-removal under adverse weather conditions, restricted operations or a reduced number of vehicles.

Optimising winter maintenance, however, does not end with route optimisation; over and above this, it may result in a reorganisation of the entire winter maintenance organisation. In the course of the optimisation process, it is possible to analyse

Part II: Urban Transport Research Programme

A. Classification of research and study assignments

1. Planning methods and planning

- 1.1 Town, country and regional planning
- 1.2 General transport plans
- 1.3 Individual transport plans
- 1.4 Legal questions
- 1.5 Miscellaneous

2. Technical studies

- 2.1 Civil engineering
- 2.2 Vehicle technology
- 2.3 Technology of transport
- 2.4 Operating technology
- 2.5 Construction and operating expenditure
- 2.6 Urban planning and construction
- 2.7 Miscellaneous

3. Economic studies

- 3.1 Demand
- 3.2 Supply (economics and technology)
- 3.3 Investments and financing
- 3.4 Miscellaneous

4. Sociological, medical and other studies

- 4.1 Sociology, psychology
- 4.2 Medicine and related fields
- 4.3 Miscellaneous

5. Specialized studies

- 5.1 Electronic data processing (EDP)
- 5.2 New transport systems
- 5.3 Miscellaneous

Project	Commissioned to	Abstr. publi in Iss
77 025/61	Quantification of the separating effects of traffic construction measures in urban areas on social relations and urban structures	Prof. Dr.-Ing. Harder, Hemmingen
77110/82	Capital investment in transport for a recreation-oriented environment — An empirical stock-taking of traffic control and traffic restraint measures in communities for recreational use	Institut für Verkehrsplanung, und Verkehrswegebau TU Berlin, Prof. Dr. Heinze
70111/83	Allowing for the needs of public transport when planning and redesigning traffic-restraint zones — The treatment of scheduled buses in the planning process	Institut für Städtebauwesen, RWTH Aachen, Prof. Dr.-Ing. Mäcke
70124/83	Traffic Restraint Precincts in small towns and rural communities — Documentation and discussion of practical experience concerning the use of signs 325/326 of the German Highway Code (StVO)	Prof. Dr. Heinze, Berlin
		Spec

1.2 General transport plans

1/67	Which principles should be heeded in the general transport plans of towns, cities, regions, Länder (states), and the Federal Republic in order to maintain and develop a uniform and co-ordinated transport system?	Prof. Dr. Voigt, Bonn
16/67	Investigations of the possibility of replacing traffic volume surveys by traffic density surveys for urban and regional traffic planning (extension cf. project 18/69)	Prof. Dr. Leutzbach, Karlsruhe
10/68	Theoretical studies on the planning of transport networks with special consideration of public short-distance passenger transport	Prof. Dr. Grabe, Hannover
11/68	The desirable connexion of urban road networks with motorways	Prof. Dr. Mecke, Braunschweig
12/68	Parking space requirements for passenger cars within office buildings for service enterprises	Prof. Sill, Hamburg
18/69	Investigations of the possibility of replacing traffic volume surveys by traffic density surveys for urban and regional traffic planning (extension of project 16/67)	Prof. Dr. Leutzbach, Karlsruhe
19/69	Methodological foundations of accounting for the cost of congestions in urban traffic	Prof. Dr. Mäcke, Aachen, Prof. Dr. Voigt, Bonn
3/70	Development of standard transport plans including their elements, and proposed solutions for traffic and transport analyses and forecasts for different town size classes	Ing.-Büro Dr. Riemer, Düsseldorf
4/70	Developing and programming a technique for the search of alternative routes in public and private short-distance transport (extension cf. projects 2/71 and 20/75)	Dornier System GmbH, Friedrichshafen
5/70	Investigation of the distribution in space and time of recreational traffic during weekends in the fringe areas of urban agglomerations; determination of relevant parameters	Prof. Baron, Dortmund
6/70	Investigation of the financial effects on the budgets of the territorial authorities involved and on the commercial result of Deutsche Bundesbahn (DB, German Federal Railways) which are the result of DB's participation in operating and fare communities as illustrated by the example of Münchener Verkehrs- und Tarifverbund (operating and fare co-ordination scheme for transport in the greater München region)	Deutsche Revisions- und Treuhand AG München
7/70	Investigation of the determination of travel time savings and their economic evaluation	Prof. Dr. Oettle, München
8/70	Determination of optimum criteria for the purpose of delimitating regions from the point of view of travel and transport	Prof. Dr. Retzko, Darmstadt
16/70	Operational, legal, and economic prerequisites for the creation of traffic pool systems	Direktor Dr. Gutknecht, Aachen
1/71	Suitable survey methods for co-ordinating parking space and road space for moving traffic	Prof. Dr. Leutzbach, Karlsruhe
2/71	Developing and programming an integrated traffic model for urban areas and conurbations (with special reference to assignment techniques) (extension of project 40/70, cf. also 20/75)	Dornier System GmbH, Friedrichshafen

Project	Commissioned to	Abstr publ in Iss
5/76 Transport conditions of disadvantaged groups of the population as a guide for purposive town and transport planning	Institut für Zukunftsforchung, Berlin	
6/76 Space-time relationships of Sunday traffic volumes in urban and near-urban areas	Dr. Heusch, Dipl.-Ing. Boesefeldt, Aachen	
21/76 Possibilities of using the STREAK/UTPS program packages for the purposes of integrated traffic route planning	DATUM, Bonn-Bad Godesberg	
5/77 Study of measures designed for separating road-bound short-distance public transport and private transport in terms of space and time	Dr. Heusch, Dipl.-Ing. Boesefeldt, Aachen	
6/77 Possibilities of developing urban pedestrian precincts paying special consideration to a passenger-oriented inclusion of scheduled public transport	Prof. Dr. Fiedler, Wuppertal	
19/77 Possibilities of handling and transporting luggage when the passenger transport of DB is shifted from rail to road	Studiengesellschaft Nahverkehr mbH (SNV), Hamburg	
22/77 Price elasticities in the demand for short-distance public transport	Socialdata GmbH, München	
70 025/79 Preparation of the Bus Transport System demonstration project	Hamburg-Consult GmbH, Hamburg	Ex At Spec
70 054/80 Consideration of environmental aspects when planning urban traffic networks	Prof. Dr. Ruske, Braunschweig	
70 058/81 The development of bicycle traffic and the probable amount of capital expenditure needed	Intraplan Consult GmbH, München	
70 060/80 Development of a concept for a future light rail rapid transit system	Rhein-Consult GmbH, Düsseldorf	
70 065/80 Inclusion of environmental aspects in the methodology of transportation planning	Ingenieurgruppe IVV, Aachen Institut für Städtebauwesen, TU Braunschweig	Specia
70 085/81 Influencing modal choice in favour of public transport, bicycle traffic and pedestrian traffic in urban transport, in big towns at the centre of large sparsely populated areas	Studiengesellschaft Nahverkehr mbH (SNV), Hamburg	
77 015/80 A study concerning the cross section design of oneway streets in built-up areas	Dr.-Ing. K.H. Trapp, Aachen	
77 022/81 The planning and design of streets in towns	Institut Wohnen und Umwelt, Karlsruhe	
77 037/84 Network simulation for homing systems in urban part areas	Prof. Dr. Hoffmann, Berlin	
77 039/85 Pilot study for the purpose of establishing extrapolation factors for short-term traffic counts in urban road networks	Institut für Verkehrswesen, Prof. Dr.-Ing. Brilon, Ruhr-Universität Bochum	
77 043/85 Possibilities of improving a regional railway line of Deutsche Bundesbahn (DB) with special consideration of providing attractive park and ride facilities, as exemplified by the Limburg—Frankfurt/Wiesbaden DB line	Studiengesellschaft Nahverkehr mbH (SNV), Hamburg	
70 155/85 Determination of foreseeable effects of the Bus Transport System demonstration project and ascertainment of <i>status quo</i> for the purpose of carrying out a "before/after" comparison and obtaining proposals for improving the demonstration project — "before" study —	Studiengesellschaft Nahverkehr mbH (SNV), Hamburg	

1.3 Individual transport plans

14/67	State and improvement of transport conditions in the area surrounding München as exemplified by the München-Wolfratshausen-Beuerberg traffic link	Ifo, München
22/68	Investigation of the lay-out of above-ground transfer facilities and interchange points to private transport (follow-up project cf. 39/70)	Prof. Dr. Kracke, Hannover
23/68	Investigation of the connection of underground with above-ground transport systems and with private transport (follow-up project cf. 40/70)	STUVA e.V., Köln

Project	Commissioned to	Abstract published in Issue
16/68	Prof. Dr. Kordina, Braunschweig	19
17/68	Prof. Dr. Kurek, Osnabrück	2
8/69	Prof. Dr. Breth, Darmstadt	6
14/69	Prof. Dr. Eisenmann, München	4
15/69	Prof. Dr. Kurek, Osnabrück	14
9/70	STUVA e.V., Köln	10
	1. Examination of the long-term behaviour of bituminous multilayered waterproofing in case of coplanar loads	
	2. Examination of the behaviour of bituminous multilayered waterproofing being secured against tangential stresses by disc-shaped anchors	
10/70	Materialprüfungsanstalt, Stuttgart	13
11/70	Prof. Dr. Nöthen, Aachen	11
12/70	STUVA e.V., Köln	13
8/71	Prof. Dr. Müller, Karlsruhe	10
9/71	Prof. Dr. Duddeck, Braunschweig	8
10/71	Prof. Dr. Breth, Darmstadt	10
11/71	Forschungsgemeinschaft für Hochspannungs- und Hochstromtechnik e. V., Mannheim	15
12/71	STUVA e.V., Köln	18
13/71	Müller-BBM GmbH, München	10
8/72	Müller-BBM GmbH, München	
10/72	Prof. Dr. Jelinek, München	26
11/72	Prof. Dr. Smoltczyk, Stuttgart	15
4/73	see 1.2 General transport plans	
11/73	Dipl.-Ing. Braitsch, Bergisch Gladbach	3
11/73	Dipl.-Ing. Braitsch, Bensberg	
12/73	STUVA e.V., Köln	18
13/73	Deutsche Eisenbahn-Consulting, Frankfurt/M.	10
14/73	STUVA e.V., Köln	16
15/73	Müller-BBM GmbH, München	11

Project	Commissioned to	Abstract published in issue
70 080/81	Investigation with regard to the safe guiding of vehicles of suburban railways on their tracks	Prof. Dr.-Ing. Kurek, Osnabrück
70 100/81	Experimental and mathematical investigation of frontal impacts which occur when rail rapid transit vehicles are shunted, and drafting of new dimensioning and construction criteria for the car bodies of such vehicles	Prof. Dr.-Ing. Bugarcic, Berlin
70 118/83	Study on reducing the spacing of the wheelsets on the bogies of light rail rapid transit vehicles	Prof. Dr. Bugarcic, Berlin

2.3 Technology of transport

3/67	Measures and effects of traffic diversions during the construction of transport facilities below ground level regarding various methods of construction	STUVA e.V., Köln	1
14/68	Measures of construction and traffic engineering for the reduction of traffic noise on highways	BAST, Köln	3
21/68	Studies into the advantages of applying the Aachen measuring techniques as compared to the other known methods for ascertaining the disturbing influence of traffic, and as a contribution to establishing guidelines for improving traffic conditions in cities, towns, and other built-up areas	Studiengesellschaft "Leichtbau der Verkehrsfahrzeuge", Frankfurt/M.	4
17/70	Investigations of the practical effects of alternating direction lanes on the safety and capacity of urban streets	Prof. Dr. Wehner, Berlin	11
19/70	Optimum travelling speeds on jointly operated routes (follow-up project cf. 14/72)	Prof. Dr. Kracke, Hannover	13
14/71	Investigations of traffic-actuated signal control. Part C: control models for partial networks	Dr. Heusch, Dipl.-Ing. Boesefeldt, Aachen	8
16/71	Effects of high-rise office buildings in town centres on traffic	Prof. Dr. Schlums, Stuttgart	8
9/72	Optimization of tramway and bus operation by way of time and traffic dependent signal control	Dr. v. Stein, Düsseldorf	14
13/72	Preliminary study for the determination of the accident probability arising in various conditions of pedestrian crossing movements on urban streets	Forschungsgemeinschaft "Der Mensch im Verkehr", Köln	10
14/72	Determination of blocking times and capacity of track junctions for local lines by means of digital computers (follow-up project for 19/70)	Prof. Dr. Kracke, Hannover	13
23/72	Reducing traffic peaks by co-ordinating traffic generator times	Prof. Habekost, Braunschweig	21
17/73	Study of the possibilities for an objective assessment of the quality of private transport in towns with special consideration of journey speed, standard deviation of acceleration and street characteristics	Prof. Dr. Grabe, Hannover	21
13/74	The effect of trains of certain suburban railway lines entering trunk lines at variable intervals on the potential degree of capacity utilization and punctuality of such suburban trunk lines	Prof. Dr. Pierick, Braunschweig	21
14/74	Practical efficiency of speed-dependent safety systems for rail-based transport systems	Prof. Dr. Pierick, Braunschweig	21
10/75	Determination of the qualitative performance of junctions on high-speed short-distance railways and study of its influence on the configuration of the junctions and the routes leading up to them	Prof. Dr. Kracke, Hannover	21
10/76	Traffic-actuated signal control including control of short-distance public transport – a study of the mutual relationships involved in the control of traffic flow as a whole	Dr. Heusch, Dipl.-Ing. Boesefeldt, Aachen	27
11/76	A generally valid procedure for calculating the capacity of platform tracks and the most suitable design of the railheads of passenger stations	Prof. Dr. Kracke, Hannover	29
77 001/78	The dimensioning of urban streets with regard to different qualities of traffic, taking into account the repercussions on the quality of the housing environment	Prof. Dr.-Ing. Mäcke, Aachen	35

Project	Commissioned to	Abstract published in Issue
2.6 Urban planning and construction		
11/69 Land use index – road index – parking index	Salzgitter-Industrie GmbH, Verkehrs- und Industrieplanung, Lenz Planen + Beraten	5
35/70 Visual marking of urban clearways and major roads in towns for the improvement of road safety and traffic flow	Prof. Spengelin, Dipl.-Ing. Dückert, Hannover	15
2.7 Miscellaneous		
2/67 Examination of the oscillation dynamics in the vicinity of tunnels of railways and discussion of measurements taken at certain points of the tunnel	Prof. Dr. Koch, Hannover	1
15/68 Statistical measurements of the sound level of railways	Physikalisch-technische Bundesanstalt, Braunschweig	4
18/68 Measurements of the admittance per unit length of various objects for determining the specifications for DC-railways in tunnels	Technische Akademie, Wuppertal	3
19/68 Study on accompanying luggage in local transport (in vehicle and at points of transfer or change)	Planungsgesellschaft Ruhr, Essen	2
24/68 Measurements of the sound conducted by solids during the passing of tramway vehicles as compared with underground railway vehicles	Prof. Dr. Koch, Hannover	4
17/71 Noise abatement on commercial motor vehicles as exemplified by the standard VÖV-bus for line operation	Gesellschaft für Verkehrsberatung und Verfahrenstechniken mbH, Hamburg	7
18/71 Effects of different vehicle types on the emission of structure-borne sound in underground railway or underground tramway tunnels with a permanent way with ballast as studied in different cities	Prof. Dr. Koch, Hannover	11
16/72 Examination of external and special influences on tunnel sections of DC operated railways with a view to corrosion hazards	Technische Akademie, Wuppertal	13
77 009/79 Assessment of road traffic exhaust gas immissions	Prof. Dr. Glück, München	29

3 Economic studies

3.1 Demand

8/67 The influence of the elasticity of demand for transport services as a function of transport rates and its effect on the transport volume in short-distance passenger transport	Prof. Dr. Diederich, Hamburg	1
9/67 Possible methods of cost comparison of private and public passenger transport from the point of view of road and rail users and of public authorities	Prof. Dr. Oettle, München	1
3/68 Problems, possibilities, and requirements of urban traffic forecasts from the economic point of view	Prof. Dr. Funck, Karlsruhe	7
6/68 Examination of the theoretical and practical possibilities of charging tolls for the solution of urban transport problems	Prof. Dr. Funck, Karlsruhe	5
8/68 Development of a method for ascertaining and analysing private car traffic in conurbations	INFAS, Bonn-Bad Godesberg	2
1/69 The future demand for passenger transport services as a function of the socio-economic structure of communities of various sizes and types (extension project cf. 24/70)	Prognos AG, Basel	3
2/69 The future load on the traffic networks of communities in the Federal Republic of Germany attributable to short-distance freight transport with special consideration of conurbations	DIW, Berlin	7
3/69 Distribution of passenger traffic volume on different modes of transport (modal split) as a function of income, social status, location within the community, journey time, journey cost, journey purpose, available transport services	INFAS, Bonn-Bad Godesberg	3

Project		Commissioned to	Abstract published in Issue
3.2 Supply (economics and technology)			
4/68	Are tax reductions and tax exemptions for public short-distance transport compatible with the principles of equality and justice of taxation, and how do they influence competition?	DIW, Berlin	2
5/68	Optimum fares in public short-distance passenger transport	Prof. Dr. Bellinger, Berlin	4
7/68	Problems and possible solutions of urban track cost calculation	Prof. Dr. Funck, Karlsruhe	7
9/68	Preliminary study preceding a study into passenger and goods transport in conurbations with a view to a technical optimum of transportation services taking into consideration utilization and properties of different means of transport a) inbound and outbound traffic b) internal traffic c) transition from private transport to public short-distance passenger transport	Prof. Dr. Nebelung, Aachen	2
20/68	The connection of the large commercial airports in the Federal Republic of Germany with the existing rapid transit systems as seen from the point of view of public short-distance passenger transport	Prof. Dr. Lambert, Stuttgart	2
4/69	The effects of operating communities in public short-distance passenger transport on the quality of service, the demand for transport, and the economic situation for the participating undertakings, as exemplified by the Verkehrsverbund Hamburg	Prof. Dr. Diederich, Hamburg	5
5/69	Effects of free public short-distance transport services in conurbations upon individual undertakings and upon the economy as a whole	Prof. Dr. Oettle, München	3
13/69	Ascertainment of the shortfall in receipts resulting from the rate for pupils, students, and apprentices on tramway, trolleybus, and scheduled motor vehicle services in the Federal Republic of Germany as measured against the comparable season ticket rate, and principles guiding the calculation of compensations	Wibera AG, Düsseldorf	3
27/70	Study on the determination of dimensioning loads	Part I Part II	11 12
28/70	Productivity and possibility of utilization of various short-distance transport systems from the economic point of view with due consideration of the foreseeable technological progress	Battelle Institut e.V., Frankfurt/M.	5
29/70	The cost-benefit analysis as a criterion in assessing the feasibility of urban underground rapid transit systems	DIVO, Frankfurt/M.	4
30/70	Rates and fares in line with future requirements and modern services for passengers (passenger handling) with due consideration of the economic situation of the transport undertakings, the demand for transport, and the practical aspects involved	Dr. Neubert KG, Düsseldorf	6
31/70	Definition of a standard of service in public short-distance passenger transport	Gesellschaft für Verkehrsberatung und Verfahrenstechniken mbH, Hamburg	7
21/71	Cost-benefit analysis of a central goods distribution system for transport by lorries as exemplified by a conurbation	Dornier System GmbH, Friedrichshafen	7
30/72	Concessionary fares and their influence on demand	Wibera AG, Düsseldorf	14
31/72	The influence of transport infrastructure on the travel behaviour of the population, as exemplified by the Munich suburban railway system	Stadtentwicklungsreferat, München	14
20/73	Cost-benefit analysis of alternative measures for traffic connections and transport development of an urban development area by public local transport as exemplified by the town of Augsburg	Dornier System GmbH, Friedrichshafen	24
21/73	Making allowance for environmental pollution when planning urban transport investments by means of cost-benefit analyses and cost-effectiveness analyses	Prof. Dr. Willeke, Köln	13
24/74	Demands on and expectations of first-class travel on short-distance public transport as exemplified by the Deutsche Bundesbahn (German Federal Railways)	Infraplan, Köln, Dr. Ellinghaus	13

Project		Commissioned to	Abstract published in Issue
70130/84	The possibilities of using the Dutch Buurtbus System as a neighbourhood bus in the Federal Republic of Germany	SNV Studiengesellschaft Nahverkehr mbH, Hamburg	37
70132/84	Study of the possibilities of improving short-distance public transport, including Deutsche Bundesbahn's rail transit, with special consideration of a branch terminal line in a medium-sized agglomeration and rural area, as exemplified by the rural district of Tübingen — Preparation of practical trial —	Study Group Kommunalentwicklung Baden-Württemberg GmbH, Stuttgart, Studiengesellschaft Nahverkehr mbH (SNV), Hamburg	42
70133/84	Study into the improvement of the economics of public transport with due consideration paid to the experience gained during the trial operation of the BFB Flexible Operating Modes Command and Control System as exemplified by the Bodenseekreis (Lake Constance District) — Phase II: Preparation of practical implementation —	Study Group Kommunalentwicklung Baden-Württemberg GmbH, Stuttgart, Studiengesellschaft Nahverkehr mbH (SNV), Hamburg	42
70165/86	Study of the effect of changes in fares on the demand for public transport	Forschungsinstitut für Wirtschaftspolitik, Mainz, Prof. Dr. Diederich und Prof. Dr. Bartling	44

3.3 Investments and financing

12/67	Structure and development of transport investments of public authorities and enterprises in conurbations	Ifo, München	5
16/69	An economic comparison of alternative urban transport systems as exemplified by the city of Hannover	Prof. Dr. Hesse, Göttingen	4
32/70	The financing of public transport investments in conurbations	Prof. Dr. Willeke, Köln	6
23/71	The evaluation of new solutions in the short-distance public transport of a medium-sized city based on cost-benefit analyses taking into consideration foreseeable technological progress — as exemplified by the conurbation of Kiel	Deutsche Stadtentwicklungs- und Kreditgesellschaft mbH, Frankfurt/M.	19
22/73	Financing of public short-distance passenger transport	Wibera AG, Düsseldorf	9
29/74	Standardized assessment criteria for evaluating transport infrastructure investments for short-distance public passenger transport and road building projects of local authorities (extension cf. project 21/75)	Industrieanlagen-Betriebsgesellschaft mbH (IABG), Ottobrunn	15
14/75	Methodical ascertainment and quantification of the dividing effect of thoroughfares and of the preservation of valuable buildings, green spaces and recreation areas within towns as benefit components for benefit-cost analyses	Dr. Harder, Hannover	21
15/75	Ex-post benefit-cost analysis for metropolitan railway line 3 in München	Industrieanlagen-Betriebsgesellschaft mbH (IABG), Ottobrunn	19
16/75	Basic procedures for carrying out benefit-cost studies in the field of transport	Industrieanlagen-Betriebsgesellschaft mbH (IABG), Ottobrunn	26
17/75	Methods for determining costs resulting from short-distance public transport for the Federal Republic, the Länder and the local authorities	Wibera AG, Düsseldorf	15
19/75	Possibilities of reorganizing short-distance public transport in rural regions with a low traffic volume	Kommunalentwicklung Baden-Württemberg GmbH, Stuttgart	19
21/75	Standardized assessment criteria for evaluating transport infrastructure investments for short-distance public passenger transport and road building projects of local authorities — test runs (extension of project 29/74)	Industrieanlagen-Betriebsgesellschaft mbH (IABG), Ottobrunn	16
15/76	Criteria and procedures for quantifying social benefits derived from local public transport in order to establish standards to guide government decisions on assistance measures in the field of fare, tax and subsidy policies	Prof. Dr. Willeke, Köln	24
14/77	Cost-benefit analysis as exemplified by a metropolitan railway line in Frankfurt/Main	Battelle Institut e.V., Frankfurt/M.	26
17/77 A	Model study for determining the investment expenditure for noise control measures for existing railway routes	Dorsch Consult Ingenieurgesellschaft mbH, München	27
17/77 B	Model study for determining the investment expenditure for noise control measures for newly planned or substantially modified railway routes	Dorsch Consult Ingenieurgesellschaft mbH, München	27

Project	Commissioned to	Abstract published in Issue
24/76 Principles and basic fundamentals to be observed in selecting representative undertakings providing local and regional public transport and in ascertaining transport-specific cost figures to be used as a basis for compensation payments towards school-commuter traffic in accordance with Art. 45a para. 2 PBefG (Passenger Conveyance Act) and Art. 6a para. 2 AEG (General Railway Act)	Wibera AG, Düsseldorf	26
70 077/80 Representative survey conducted to ascertain the mobility behaviour of (mobility-) handicapped persons and of the members of their households	Socialdata GmbH, München	Special 36
— Study into the design of public rail transport in line with the needs of the handicapped	Gruppe Hardtberg, Bonn-Bad Godesberg	Special 38
70 099/82 Statistical assessment of rail transit lines in the Federal Republic of Germany	STUVA e.V., Köln	42
70 168/85 Transportsystems in line with needs of the handicapped Accessible bus services	Gruppe Hardtberg, Bonn-Bad Godesberg	Special 43

4 Sociological, medical and other studies

4.1 Sociology, psychology

13/67 The competitive situation between private and public transport from the point of view of road and rail users	INFAS, Bonn-Bad Godesberg	1
34/70 A sociological typology of traffic (Problems and aspects involved in the development of an empirically based sociological typology of traffic as a medium-term forecasting instrument for private transport)	Prof. Dr. Klages, Berlin	13
27/74 Social assessment of novel short-distance transport systems (preliminary study)	SNV, Hamburg, Battelle, Frankfurt/M., Prognos, Basel	15
18/75 An inquiry into the provision of better services for the handicapped on local public transport	STUVA e.V., Köln	Extended Abstract Special 23
23/75 Social assessment of short-distance transport technologies (phase II)	SNV, Hamburg, Battelle, Frankfurt/M., Prognos, Basel	21

4.2 Medicine and related fields

21/72 Noise abatement for traffic facilities: the influence of fluctuating traffic noise levels on the disturbing effect. Suitability of the energy-equivalent continuous noise level for characterizing traffic noise	Dr. Buchta, Düsseldorf, Prof. Dr. Schlipkötter, Düsseldorf	14
16/76 Traffic noise forecasts for urban streets	Dr. Schreiber, BBM GmbH, München	24
70 081/80 Interdisciplinary field study on special features of rail-traffic noise as compared with road-traffic noise	Planungsbüro Obermeyer, München Project management Prof. Dr.-Ing. Heimerl, Stuttgart	35

4.3 Miscellaneous

36/70 Living conditions of plants at difficult urban habitats, in particular on tunnels, service ducts and underground garages	Prof. Dr. Schreiber, München	8
37/70 Ascertainment of occurring and reasonable walking distances within central urban areas	Prof. Dr. Retzko, Darmstadt	14
70 035/79 British and Scandinavian social science contributions to urban transport research	Battelle Institute e.V., Frankfurt/M.	33
70 047/79 Measures and possibilities for integrating handicapped people into the overall transport structure	Studiengesellschaft Nahverkehr mbH (SNV), Berlin	Special I 30
70 045/80 and 70 090/82 Establishing foundations and recommendations for the introduction of car pools for journey-to-work commuting on the basis of model tests (70 045/80), and practical trial of a commuter information system (70 090/82)	SNV Studiengesellschaft Nahverkehr mbH, Hamburg	35