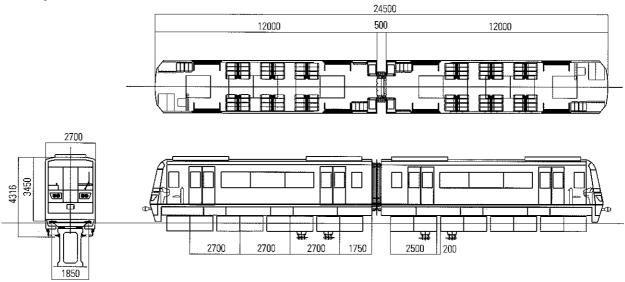


3149


Maglev

(Magnetically Levitated Vehicle) is now a reality

Specification

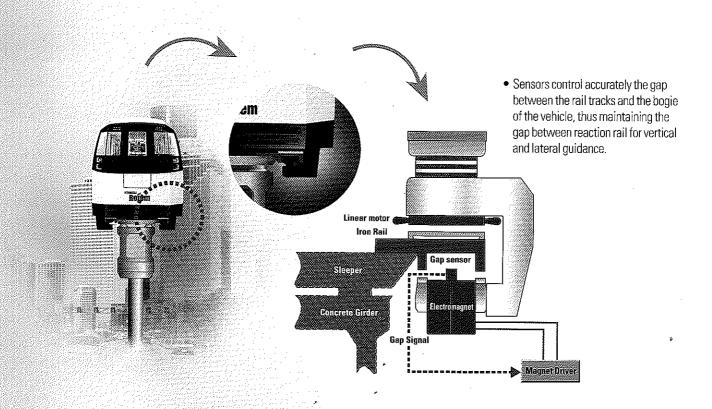
⊘ Train Formation

Vehicle Specification

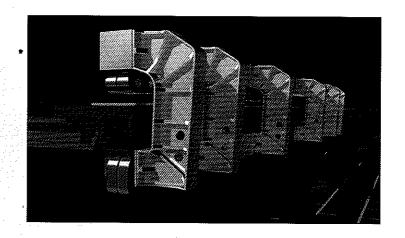
oecifications	
Train Formation	2 vehicles (Mc1-Mc2)
Vehicle Dimensions	Length : 12 m (Train Length : 24:5 m)
	Width : 2.7 m
	Height: 3.45 m
Vehicle Weight	Tare :: 20 t
	Laden : 28 t
Passenger Capacity	Normal : 93 persons/car (5 persons/m²)
Propulsion System	Linear Induction Motor + VVVF Inverter
Levitation System	Electro Magnetic Suspension Type, 8mm Air-gap
Brake System	Blending of Regenerative & Mechanical Brake
Power Supply	Voltage: 1,500 VDC
ain Formation	
Max: Design Speed	110 km/h
Max. Operating Speed	80~100 km/h
Max. Acceleration	4.0 km/h/s
Max. Deceleration	4:0 km/h/s in service, 4:5 km/h/s in emergency
Noise Level	• Max. 65 dB(A)
Ride Comfort	Below 2:0 in terms of UIC
Max, Gradient	70 ‰
Min. Curve Radius	50 mR

General Description

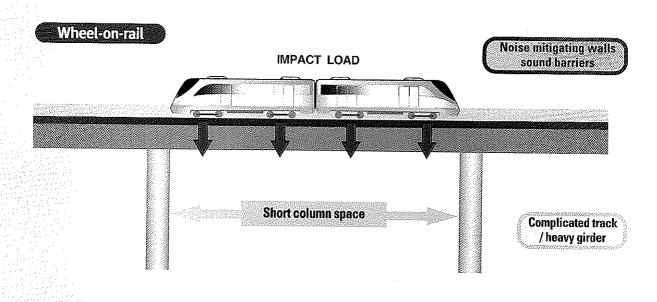
Rail revolution


Maglev, always thought of as a futuristic model of rail transport, is already a reality in our world. It features a brand new approach to conventional rail technology.

Ready to run


Hyundai Rotem's innovative Maglev technology offers clean, comfortable and safe transport for passengers and benefits operators with low maintenance costs and high operational efficiency.

Principles


Attractive forces between rail tracks and electromagnets equipped on the bogie of the vehicle, provides levitation and maintains proper alignment of the vehicle.

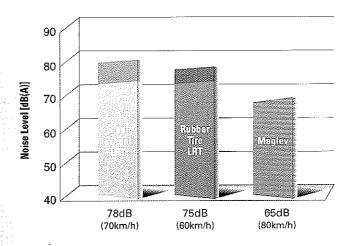
- Maglev is propelled by a linear motor, which is made by splitting a rotary motor.
- The primary coil of the linear motor is mounted on the bogie, while the secondary reaction plate is installed on the rail.
- A voltage-fed inverter is used for the linear motor power control.

General Characteristics

Maglev

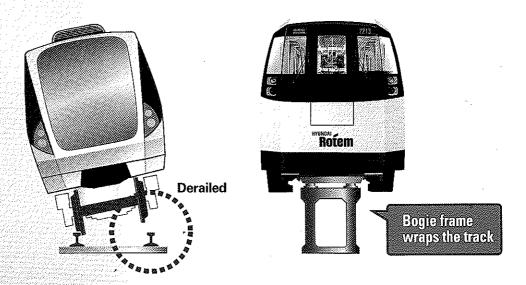
Long column space Simple track / light girder

Lower construction and maintenance costs


- Evenly distributed load to the track allows simple and aesthetically pleasing structures.
- No need for noise protection barriers along the rail tracks.
- Fewer spare parts and lower maintenance / labor costs since fewer parts are subject to friction and wear.

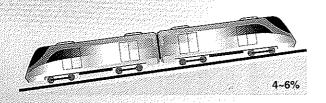
General Characteristics

Environmentally-friendly system

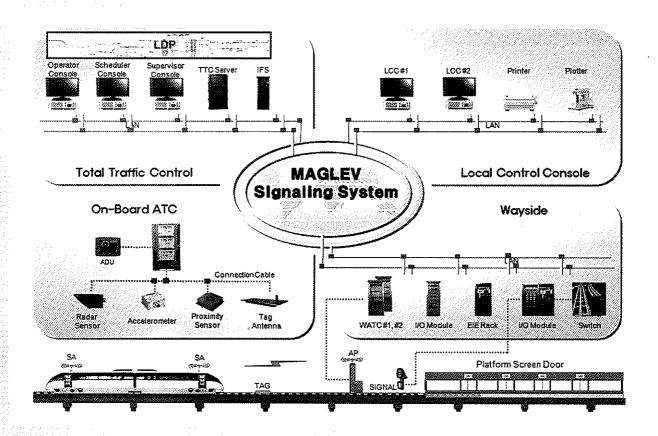

Due to non rail-wheel contact, the Maglev provides comfortable rides and causes minimum pollution.

- Lower Noise [Less than 65dB(A)]
- Lower Vibration [Less than 0.02g]
- No source of dust such as rubber, iron, etc.

Safety


Maglev is safe from derailment and overturning since the bogie frame wraps the track unlike conventional steel wheel on rail.

Excellent driving capabilities


Maglev is propelled by a linear motor generating traction force directly to the rail and thus it.

- Does not rely on adhesion. (operate in severe weather)
- Can be operated on steep gradients. (powerful climbing capability-max. 8%)

MAGLEV Signaling System

 Mid-term Project for the Technology Development managed by the Ministry of Commerce, Industry and Energy

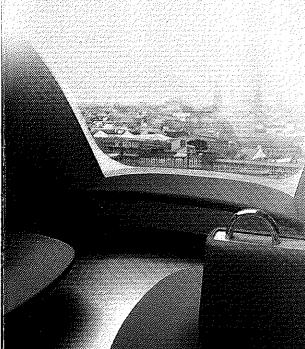
■ Introduction

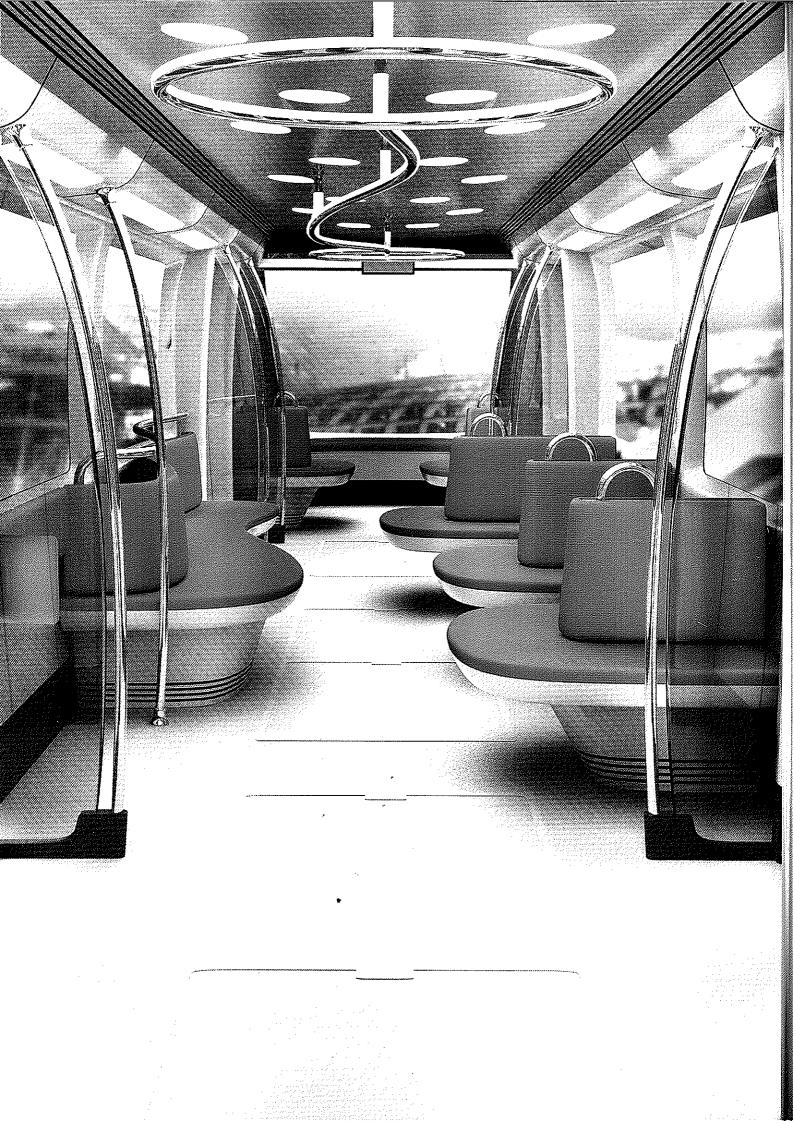
Development of the total solutions for on-board & wayside signaling system featuring driverless operation and Communication Based Train Control (CBTC)

■ Development Period

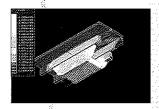
- #1 Phase: October 2003 ~ September 2006 (3 years)
- #2 Phase: October 2007 ~ September 2008 (2 years)

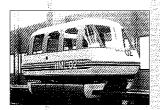
■ Development Scope

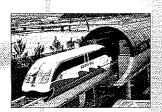

- Automatic Train Protection / Automatic Train Operation (ATP/ATO)
- Electronic Interlocking Equipment (EIE)
- Wayside Automatic Train Control (WATC)
- Total Traffic Control (TTC)

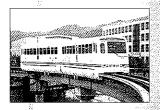

Progress

- Completed on-board & wayside signaling system, command equipment
- Passed the environmental test for on-board & wayside signaling system, EIE,
 WATC (March 2006)
- Fo perform the test for interface and driverless operation on the test route between
 National Science Museum and EXPO Science Park (March 2007 ~ September 2008)


Expecting Effect


- sesared total solutions for on-board & wayside signaling system
- Equipped in urban rail transit system and light rail transit system





Development History of Maglev

1986

Started the development of Magnetically Levitated Vehicles (Maglev)

1990

Completed the development of prototypes for HML-01 and HML-02

1993

Operated HML-03 in Daejeon EXPO 1993

- Operation period: 3 months

- Total passengers: 120,000 persons

1994

Performed the development of UTM-01 according to the national policy of the Ministry of Science and Technology (May 1994 ~ September 1999)

- Operation distance: 70,000 km

- Performed jointly with Korea Institute of Machinery and Materials

2003

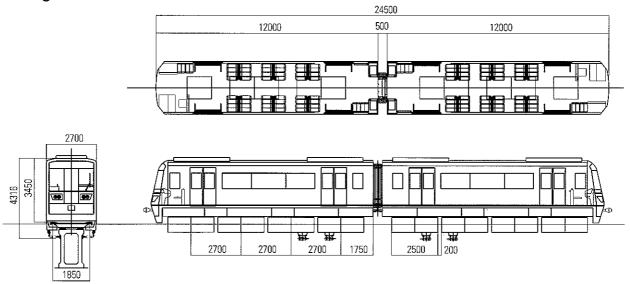
Performend the development of UTM-02 according to the national policy of the Ministry of Commerce, Industry and Energy (October 2003 ~ September 2008)

- Driverless Operation System

 Preliminary Operation between National Science Museum and EXPO Science Park (April 2008 ~)

September 2004

Exhibited UTM-02 at InnoTrans 2004 held in Berlin,
Germany


To perform Urban Maglev Project managed by the Ministry of Construction and Transportation (December 2006 ~ November 2012)

- To perform the Development of Vehicle as a chief director

- To manage the Analysis of RAMS and LCC

Specification

Train Formation

Vehicle Specification

Specifications	
Train Formation	2 vehicles (Mc1-Mc2)
Vehicle Dimensions	Length : 12 m (Train:Length : 24.5 m)
	Width : 2.7 m
	Height: 3:45 m
Vehicle Weight	Tare : 20 t
	Laden : 28 t
Passenger Capacity	Normal : 93 persons/car (5 persons/m³)
Propulsion System	Linear Induction Motor + VVVF Inverter
Levitation System	Electro Magnetic Suspension Type; 8mm Air-gap
Brake System	Blending of Regenerative & Mechanical Brake
Power Supply	Voltage: 1,500 VDC
Train Formation	
Max. Design Speed	110 km/h
Max: Operating Speed	80~100 km/h
Max. Acceleration	4.0 km/h/s
Max Deceleration	4:0·km/h/s in service, 4.5 km/h/s in emergency
Noise Level	₅Max. 65 dB(A)
Ride Comfort	Below 2:0 in terms of UIC
Max. Gradient	70 ‰
Min. Curve Radius	50 mR

