

Preliminary Feasibility Study on Light Rail Transit in Korea

By Lee, Seung Heon

Public Investment Management Center
Korea Development Institute

1. Introduction to PFS

□ Overview

- Preliminary Feasibility Study(PFS) is a system that verifies the feasibility of large scale development projects through a general review of such items as economic analysis, policy analyses, investment priority, investment timing, and funding methods.
- These studies have been conducted since 1999 for the purpose of enhancing the fiscal productivity through judicious launching of large-scale projects.
 - While Feasible Studies examine technical details of projects as well as overall economic feasibility, PFS focuses on overall evaluation of a project from economic, social and political perspectives and decide whether the projects should proceed.
 - Feasibility Study is conducted by the line ministry, and MPB is in charge of PFS.

□ Projects subject to PFS

- All new public investment projects that amount to fifty billion Korean won(≒40 mill. US dollars) or more and that partly or totally rely on the national budget in its funding.
- Local government projects and private investment that participated in infrastructure projects and the central government subsidy involved thirty billion won or more.

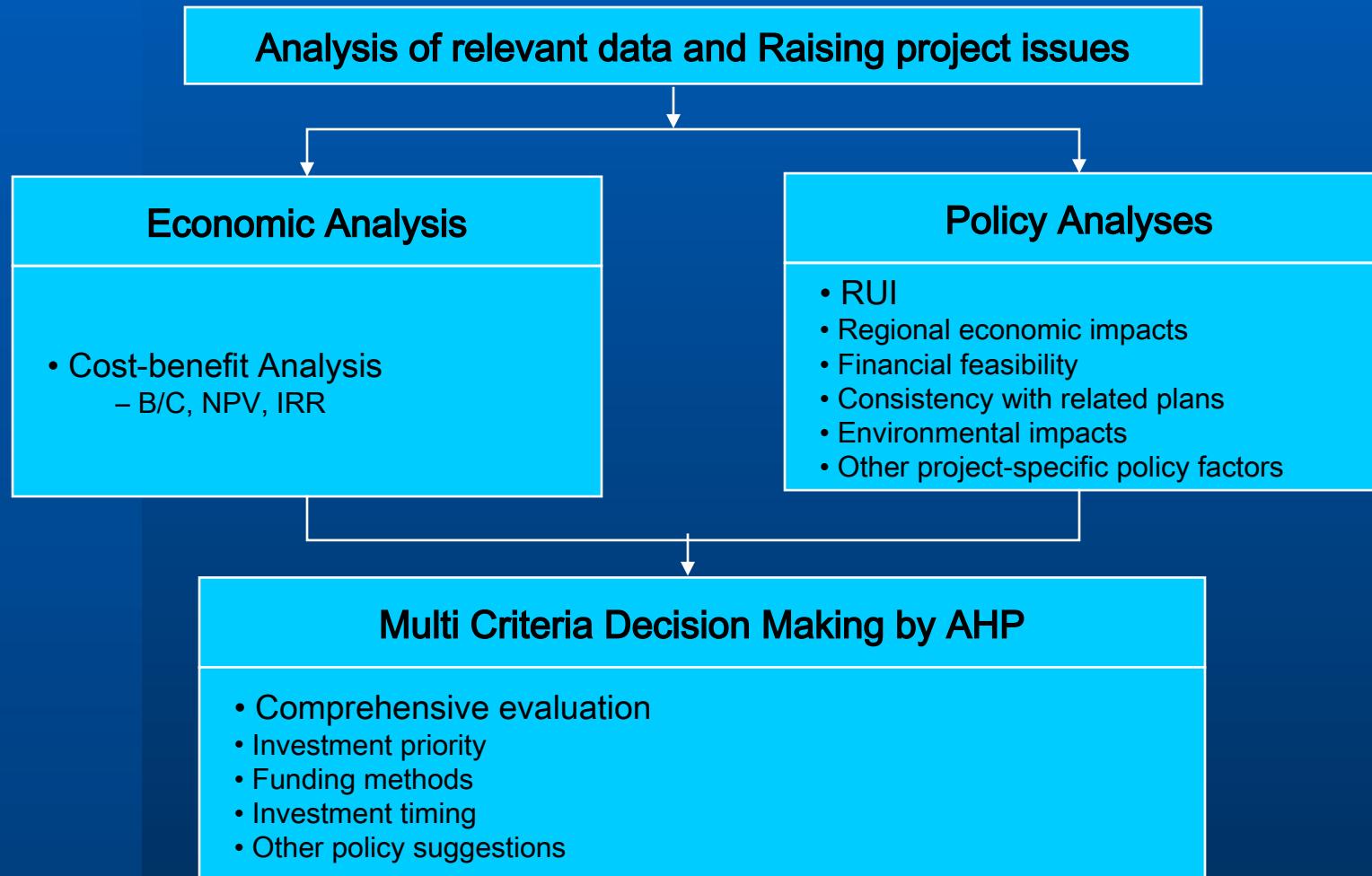
□ Selection and Implementation of PFS

- PFS Committee selects PFS projects in discussion with committee members including line ministries.
- PFS committee members: MPB, line ministry, KDI, and other experts from the private and public domains.
- KDI Public Investment Management Center(PIMA) plays a leading role in conducting PFS. PIMA organizes a separate team for each project where related experts of scholars, private research organizations and other government think tanks take part in evaluating major issues.

2. Manual and Methodology for PFS

□ Overview

- PIMA has attempted to maintain consistency in project evaluations by applying the standardized methodology and common database while ensuring that special natures of individual projects are not undermined seriously.
- Evaluation is carried out in accordance with the Standard Guidelines for PFS.
 - General Guidelines
 - Specific Guidelines by project type : Road, Railroad, Seaport, Airport, Water Resources(Dam construction)
- PIMA has been conducting broad data collection efforts as well as academic researches on important indicators included in the Guidelines.



□ The Framework of PFS

- Project Managers:
 - KDI : KDI itself organizes PFS team for each project.
 - Outsourced : Some typical projects such as national highway constructions are subject to outsourcing and the number of outsourced projects are increasing.
- Study Period : 5 - 6 months
- Mid-term and Final Report to PFS Committee
 - The PFS committee discusses PFS methodologies applied and makes suggestions to PFS team.

□ Study Procedure

- Analysis of relevant data and Raising project issues
 - Relevant basic data collection : project background, purposes, history and conception by line ministries
 - Brain-storming process is important to review and compare the 'Do-Nothing' alternative with other alternatives, through which purpose statement of the project is closely examined.
- Economic Analysis
 - Cost-Benefit Analysis(CBA) is the backbone of the economic analysis. The results are presented in B/C, NPV, and IRR.
 - CBA is conducted in accordance with evaluation manuals developed by PIMA.

Policy Analyses

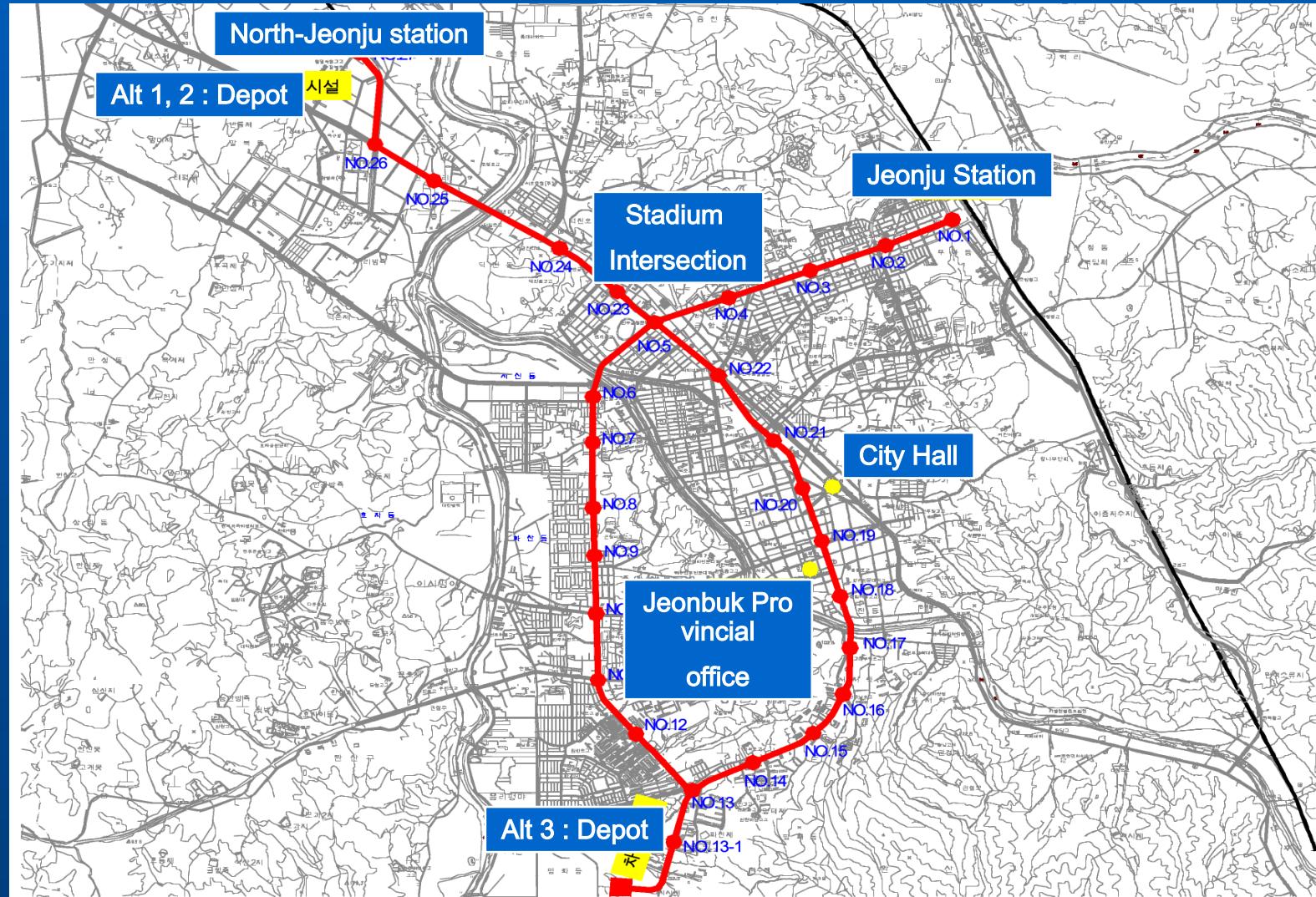
- o Quantitative or qualitative analyses of important factors that are not part of the economic analysis.
- o The common policy factors : regional backwardness index, regional economic impacts, financial feasibility, consistency with related plans, and environmental impacts
- o The Regional Underdevelopment Index (RUI) was devised to prevent 'the rich gets richer, and the poor gets poorer' phenomena and to enhance balanced regional development.
- o The regional economic impacts are computed using the KDI's Multi-Regional Industrial Input-Output model (MRIO).

- o **Financial feasibility** : the feasibility of fiscal planning is qualitatively evaluated based on the mid-term fiscal plan, and fiscal conditions of local government where applicable.
- o **Consistency with higher-level plans** : projects included in the higher-level plans get higher priority.
- o **Environmental impacts** are assessed if necessary.
- o **Other project-specific policy factors** : special features of the project included to determine overall feasibility

Multi Criteria Decision Making by AHP(Analytic Hierarchy Process)

- o Group decision of each team members is drawn in a quantitative measure.
- o Major policy suggestions such as change in project scope and investment timing are made.

❑ PFS conducted


Category	Road	Rail	Seaport	Others	Sum
1999	11	2	1	5	19(30)
2000	11(6)	7(1)	5(2)	7	30(9)
2001	20(6)	14(3)	1(1)	6(1)	41(11)
2002	9(4)	9(3)	6(2)	4(1)	28(10)
Sum	51(16)	32(7)	13(5)	22(2)	118(30)

❑ Note : the number in parenthesis is PFS outsourced

- ❑ 54 out of 118 projects accepted during 1999-2002
- ❑ PIMA conducted 5 PFS for LRT projects including Jeonju Street LRT

Line Map

1. Overview of Jeonju LRT

- The project outline
 - Route : North Jeonju Station-> Paldal-Ro Blvd. -> Stadium Intersection -> Jeonju Station
 - Scale : 19.3km, 27stations, 1 depot
 - System : Street Light Rail Transit
 - To be implemented by inducing private investment projects
 - Funding sources : Central Government(20%),Local Government(20% (except land acquisition)), private investment(the rest)
 - Preparation by the Jeonju City
 - Collecting relevant data for LRT introduction
 - Workshops by experts and stakeholders
 - Feasibility Study for LRT project by KOTI

Project purposes

- o Maximizing operation efficiency of Jeonju transportation system
- o Relieving traffic congestion and enhancing the level of public transportation service
- o Introducing a new system which is environment-friendly, reliable, safe, and future-oriented

2. Evaluation

□ System : Street LRT

- Street LRT is an optimum system in terms of contribution to city growth, costs, operating route, and domestic technical level.

□ Alternatives Evaluated

	Construction period	Way of Crossing at The Stadium Intersection	Train Depot
Alt 1	One-Step	Underpass	North-Jeonju Station Suggested by KOTI
Alt 2	One-Step	Ground pass	North-Jeonju Station
Alt 3	Two-Step	Underpass	Daejeon-Dong

3. Travel Demand Forecast

- Traffic Zone : 60(45 internal zones, and 15 external zones)
- Methodology : Conventional four-step travel demand model
 - Modal Split : Seoul's Modal Split Model is adjusted to reflect Jeonju's transportation pattern.
 - Direct impact area : Jeonju LRT stations' vicinities
 - Indirect impact area : Jeonju Jurisdictional Area
 - Time Scope
 - Initial year : 2006 of the opening year
 - Final year : 2035, 30 years after opening year

□ Results

- The per-kilometer travel demand of LRT
 - 6,497(2006) -> 11,283(2021) (trips/day·km)
- LRT's share is 7-8% of all the trips in Jeonju

		Auto	Bus	Taxi	Other	LRT	Total
2006	Trip (%)	827,415 (45.0)	562,882 (30.6)	263,842 (14.4)	57,885 (3.2)	125,522 (6.8)	1,837,546 (100.0)
2011	Trip (%)	1,018,069 (48.2)	582,713 (27.6)	303,349 (14.4)	59,126 (2.8)	146,761 (7.0)	2,110,018 (100.0)
2016	Trip (%)	1,133,885 (48.0)	637,501 (27.0)	354,127 (15.0)	60,752 (2.6)	176,288 (7.5)	2,362,553 (100.0)
2021	Trip (%)	1,214,427 (46.6)	698,349 (26.8)	411,185 (15.8)	61,388 (2.4)	217,995 (8.4)	2,603,344 (100.0)

4. Cost Estimation

Construction costs

Unit : 100 million Won

Category	Alt 1	Alt 2	Alt 3	KOTI
Length(km)	19.32	19.32	20.32	19.32
Construction	2,484.68	2,238.68	2,588.04	2,564.96
Vehicle	870.00	870.00	960.00	1,125.40
Others	446.07	434.54	473.89	299.01
Total	3,818.75	3,588.22	4,021.93	3989.37

- o Others include cost for design, land acquisition and test drive

- Operating and maintenance costs

- labor, electricity and maintenance costs included

Unit : 100 million Won

Category	2006	2011	2016	2021
Alt 1	88.1	94.4	112.5	126.1
Alt 2	88.1	102.3	112.5	126.1
Alt 3	47.4	95.5	112.0	127.3

5. Benefit Estimation

Summary

Unit: million won

Category	2006	2011	2016	2021
VOTS	23,962	23,539	24,763	50,909
VOCS	13,985	16,486	19,611	23,070
TACS	422	5,758	3,660	3,789
Sum	38,369	45,783	48,034	77,768

* VOTS : Value of Time Saving; VOCS : Vehicle Operation Cost; TACS : Traffic Accident Cost Saving

- o VOCS and TACS increase continuously, but VOTS fluctuates according to traffic conditions.

6. Economic Feasibility

Bases

- o Base year : 2000
- o Social discount rate : 7.5%
- o Evaluation period : 35 years(5 years of construction + 30 years of operation)

Results

	B/C	NPV	IRR(%)
Alt 1	1.17	762.7	9.17
Alt 2	1.12	493.3	8.65
Alt 3	1.25	954.0	10.03

7. Financial Feasibility

Bases

- o Base year : 2000
- o Price increase rate : 5%

Results

category	WADR(%)	RFDR(%)	FIRR(%)	FNPV	Subsidy(%)
Alt 1	15	9.52	10.10	73.33	55
Alt 2	15	9.52	10.04	59.97	50

WADR : Weighted Average Discount Rate; RFDR : Real Financial Discount Rate

- o If WADR is 15%, public sector should subsidize 55% of construction costs except land acquisition of Alt 1 to make this project financially viable.

8. Policy Analyses

□ Regional economic impacts

- Model : KDI MRIO(Multi-Regional Industrial Input-Output Model)
- Results
 - Production induced within Jeonbuk Province amounts to 360.5-407.1 billion won, which is 45% of production induced nation widely.
 - Total number of employment induced amount to 4,132-4,670 within Jeonbuk Province, which is 46% of total domestic employments induced by this project.
 - Wage increase occurred in Jeonbuk Province amounts to 53.3-60.3 billion wons, which is 46.2% of total domestic wage increase.

□ **Regional Underdevelopment Index(RUI)**

- The regional Underdevelopment in terms of RUI is 17 out of 170 jurisdictions.
- The regional Underdevelopment is not an important factor in evaluating this project.

□ **The Region's Attention to the Project**

- **Citizens** : According to the Jeonju Comprehensive Development Plan(2000) 58% of citizens are in favor of LRT project.
- **City government**
 - The Comprehensive Transportation Improvement Plan incorporates LRT construction.

- o A SWOT analysis shows “congestion is a key threat to city’s future development and LRT construction is an effective solution”.
- Other Stakeholders
 - o The owners and labor unions of taxi and bus companies strongly oppose to LRT construction.
 - o NGOs are supportive to the plan on one hand, but they are concerned about fiscal prudence of local government on the other hand.

□ Transition in Urban Railway Policy

- Urban Railway Policy should be changed because :
 - Heavy rail was provided only in 6 largest metropolitan areas with substantial subsidy from the central government ; and
 - The subsidy scheme put little emphasis on fiscal accountability and thereby resulted in large amount of debts from operation as well as construction.
- The wide spectrum of LRT make it possible for a city to choose an appropriate system in response to travel demand and fiscal condition.
- Jeonju is a good candidate for LRT construction instead of heavy rail system.

9. Comprehensive Evaluation and Policy Suggestions

□ AHP Analysis

- An AHP model is used to combine the results of economic and policy analyses and to evaluate overall feasibility of the project.
- According to AHP analysis, PFS team members think:
 - Policy analyses is more important than economic analysis;
 - Financial plan is most important among the items of policy analyses; and
 - The consideration of “transition in urban railway policy” is more important than regional economic impacts.
- Evaluation summary
 - Jeoju LRT project is feasible in economic and policy perspectives.

Policy suggestions

- Appropriate fiscal plan should be devised to minimize fiscal burden of local government. Inducement of private investment is a key to the realization of the projects.
- The conflicts among stakeholders should be resolved to implement the plan.