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. ABSTRACT
In previous research on urban rail operations, capacities
have been calculated using fully deterministic procedures
based on the calculation of the minimum time interval
between successive arrivals at a station. This paper adds
to previous contributions on the analysis of traffic Fflow
of railway systems in that a stochastic model for the
passage of trains is derived in terms of queueing theory.

Statistical fluctuations in station stop times occur in

urban commuter railways at bottleneck: stations and further-
more some randomness is present in the time headways of
trains passing the entry point to the station. Thus it is
appropriate to extend the deterministic models by consider-
ing a railway block signalling section (from the outer home
signal to the station starter) as the. service component of
a classical single server queue. Various time headway dist-—
ributions are considered as inputs to the station approach
and particular attention is given to a Semi-Poisson model
of headway, similar to certain models used for analysing
road traffic headways.

The work is valid for a general class of distributions in
both input and service and admits of wide application in
modelling railway signalling systems. As an example data
collected from a study of London Transport Underground
Railways were used to calibrate headway models and then
applied to model a typical block section including a
station stop. It is believed that a quene-theoretic basis
for mean waiting time in the system and mean queuve length
for a given traffic intensity provides a better approach to
the planning of levels of service than the present oper-

ating procedure of some railway bodies who calculate the o

capacity under the deterministic minimum time headway
criterion and then operate at some proportion of that level.
l. INTRODUCTION

A major difficulty in urban railway operation is the
satisfactory definition of capacity for train arrivals at a
station entrance in a commuter railway system.

Traffic flow theoxry fof'railway systems has involved
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the development of theoretical models for the minimum time
interval between consecutive arrivals at an idealized
railway statibn(l)} and capacity calculations have been
based on fully deterministic models assuming fixed value
Parameters. Lang and Soberman(z) discuss various concepts
of capacity for certain signalling regimes, in particular
: thef de;ive expressions for the capacity of a block
signalling system with and without a station stop, as a
function of approach speed, A more detailed consideration
of the principles of trackside signalling is found in
Lagershausen(3}, who extends the work from manually driven
systems on fixed block operation to running at "electric
sighting distance", which is an automated system with a
theoretically continuous monitor of headway'of the train
in front. It is well known that closer headways can be
obtained by increasing the number of trackside signals
until in the limit intermittent signalling becomes cont-
inuous; Askew et al(4) give a practical illustration of
this. The concept of running at an ideal minimum safe head-
way in the presence of imperfect information is examined
by Rahimi et al(s), who give an analytic expression for a
general saféty margin which would enable a Practical real-
isation of tha definition proposed by Bergmann‘l) that a
rallway system is based on the operational philosophy that
successive vehicles be separated by a gap which 13 not
"less than the instantaneous stopping distance of the
following vehicle. Morimura(s) discusses a practical study
of line capacity from a deterministic view, whilst Yamada
‘ Proposes a random variable r:lpi:aro::u:h(7 . '

This paper adds to previous work on traffic flow in
rallway systems in that a stochastic model is introduced
to model the signalling system in queueing theory terms.
In the notation of Xendall!®), this 1s (er/G/1). The fiow
of trains through a single track station is’ essentially a
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stochastlc process with the service mechanism of the
queue being dependant on the form of signalling employed
on the station approach. The presence of random variation
in driver acceleration and deceleration characteristics,
together with the possibly substantial variation in
station stop time for loading and unloading, constitute

ﬁ, the service time distribution. Likewise variations in the

input stream from timetabled {usually equally spaced) time
headways are also accommodated by & general input distri-
bution. A significant feature of a close headway passenger
sexrvice is the nature of the time headway distribition
which can loosely be described as having two components, a
free'and a 'constrained' component. A Semi-Poisson(g)model
of time headway is propgsed and its suitability (see fig.3)
is discussed for a rail@ay model.

2, FPORMULATION OF CAPACITY PROBLEM
The underlying philosophy of a block signalling system

. is that the section in which a train is travelling should

at all times be protected from rear-end collisions. In the
event of a signal being passed at danger some automatic
device applies the emergency brakes and the train is

" halted in the emergency braking distance, thus a train in

any particular section of track is separated from an on-
coming train by at least an emergency braking distance.
This safety factor is the basis for the design of conven-
tional rallway systems. The principles of operation are
described here for the case of an idealized station
approach. (Fig 1 shows a schematic representation of the
time and velocity trajectories in a station approachl}.
2.1 Description of station avproach

Consider a sequence of trains all of which stop in
the station as represented in fig 1. Let the n th train
approach at velocilty v and consider the velocity traject-
ory at various distances from the sighting peoint of the
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outer home signal, In section 2.2 the élapsed time from
this point is derived. The approaching train is assumed to
be making an unchecked approach to the station, Thus it
runs at v over the reaction distance dl and over the
service braking distance dz. It has now reached the outer
home signal which it pPasses. (If the signal were at danger
then the emergency brakes would have been applied, braking
the train to rest in distance d3). The train now brakes +o
a halt by apply}ng the service brakes over a distance d4.
The train comes to rest in the platform berth of length L
which is displaced d3 from t?e outer home signal thereby
ensuring that whilst the train is stood in the platform it
is protected from a rear-end collision should the n+l th
train attempt to enter the section. The n th train waits
till the passenger loading and unloading process is com-

- plete (a process which varies especially between surface

and underground systems depending on how the doors are
controlled}. When the doors are all c¢losed and when this

- has been proved, the train is free to run out provided

that the station starter signal permits this. When the
train has covered a distance at least equal to its length
the outer home signal clears to allow the next train entry

 to the platform, The run-out distance ds 1s caculated to
. Prevent a rear-end collision beyond the starter overlap.

2.2 - Conventional approach to minimum time headwav

;The sequence df operations described in section 2.1 in
distance terms is more usually considered in terms of the
time components and thus an expression for the total time

.. h taken to pass through the station section is cbtained.

The presentation is simplified if we consider a railway
system which consists of equi-length trains with identical
braking and acceleration characteristics, If this is not

 true then the safety aspects of the problem require that
- the system be safe in all cases and thus the poorest
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Fig. 1 SCHEMATIC TIME AND DISTANCE HEADWAYS
DURING A STATION APPROACH
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performance of the longest train is the limiting factor,

.Hence a non~-trivial donsequence for the operation of the

line at maximum capacity is that different types and len-
gths pf train stock should not be used in the same service,
2.3 Notation for minimum headway
h = Minimum time headway based on the maintenance of a
safe stopping distance between successive vehicles
t1= Combined driver and system response time
t,= Run-time over sighting distance.to outer homé signal
t3= Time taken from passing signal to braking to rest
t4= Station stop time (wheels stop.to wheels start)
tg= Run-out time to clear outer home signal

Thus we define the conventional minimum time headway as

h = Bttt Eat £+ te (1)
Whilst the distance headway 4 is equivalently given by
d = dl +d2 +d3 +L +d5 (2)

A particularly simple set of relationships can be derived
for t,, ty and t; in terms of the approach speed v, the
service braking rate fl' the emergency braking rate f2 and
the acceleration rate a; {(all assumed constant).
Berg‘mann(l) quotes the following result:

ho= eprbv(e, v a7 gLy (3)
subject to certain restrictions on L or v, Thus a minimum
time headway equation can be derived in terms of v the
approach speed. This equation or a more refined version if
the signalling incorporates intermediate home signals is
the basis of the signal engineers capdcity caloulation
since q, the flow per unit time, is inversely related to
the minimum headway (g=k/h in appropriate units k ).

The weakness of this approach is that whilst a theor-
etical lower bound exists on h for all v, thus implying an
upper bound on gq; no allowance is made .for the presence of
randomness which reduces the capacity over a fixed period

668

URBAN RAILWAY CAPACITY

of time corresponding to a peak period of commuter travel
when considerable random variationg in (3) occur.

3. QUEUEING THEORY INTERPRETATION OF BLOCK SIGNALLING

It is possible to conceive of a rallway block section
as the service component of a c¢lagsical single server
gueve with a 'first come first served' priority rule. The
approach here adopted is based on equation (3) so it is
convenlent to define as T the epoch of arrival of the
n th train at the sighting point of the outer home signal.
Let U, be the service time of train n, thus .at epoch T, +U
the next train may enter the section. (The service comple-

n

" tion corresponds with the outer home signal changing from

danger to cleax). Should the (n+l)th train arrive at the
sighting point befo;e epochJ(Tn+Un), at epoch Tn+l’ then
it brakes to a halt in front of the outer home signal. It
is important to note that the service mechanism is not
timed from passing the outer home signal {(which could be
an imaginary stop line)}; by adopting this device, the
service mechanism of the gqueue exactly parallels the
minimum time headway equation.
3.1 Derivation of expression for gueueing time

Let us dencte by Xn the queueing time of train n and
by Zn the time between arrivals of n and {(n+l)th train at
the sighting point of the outer home signal. (see fig. 2)
It is assumed that Un the service interval is independent
of &, the inter~arrival time. Let A(x) and B(x) be the
distribution functions of the inter-arrival and service
time respectively. It is assumed that a stationary dist-

ribution of queuneing time exists, so we proceed by cons-
idering the relationship between the queueing times for
the n and (n+l)th train, X and X_,;.
X 41 = Max(xn UL =2, Q} {4)
Let the stationary distribution of queueing time be F(x),
We define an intermediate distribution K(x) for U,-Z,;, so

i.e.
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R(x) foé(x»,z)dmz) (5)

Since X, and Un-zn are independent, the distribution
function of F(x) satisfies the well known integral equation
of the Wiener-Hopf type. ’

Fix) = IOK(x-wdF(y). (6}

3.2 Modifications to dqueueing time in a signalling system

The usual equation of queueling theory (4} requires
careful interpretation in application to a railway block
signalling system. Conventional Jqueueing theory assumes
that service may begin at the epoch when the previous
service had been completed, that is to say there is no
'connection delay', before service begins. If there were a
connection délay Cn, the queueing time becomes

oy = Max( X + U, + Cpy. 0) (7)

where the distribution of C 1s required, thus further

'complicating the integral equation.

The approach of section 3. in separating the timing
point from the imaginary stop~line has introduced a
connection type phenomenon involving a simple connection
delay or a process loosely described as 'expedited con-
nection'. The situation is illustrated in fig. 2, and
described in section 3.3. Thus to complete the discussion
of queueing time we note that a train is considered to be
in a queue when it is unable to enter the station and is
thereby incurring a time penalty in braking, at rest, or
in reacceleration. The modified queuelng time egquations
are derived in the Appendix,

3.3 ZTypes of delay to oncoming trains

(The categories correspond to the train trajectories fig 2)
3.3.1 Cidse 1 No delay to oncoming train, since the signal
is clear at epoch of arriwval,

3.3.2 Case 2 The train is checked for a short interval
but is able to reaccelerate and achieve the usual approach
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veloclty v, as given 1in section 2, at the braking point,
3.3.3 Case 3 The train is not brought to rest before the
outer home signal clears, but it is sufficlently checked
that it cannot regain speed v before the braking point.
3.3.4 Case 4 The train is brought to rest at the outer
home signal and walts on the stop line until the signal
clears. It then accelerates to a new braking point and de-~

“celerates to stop in the platform.

Both case 3 and case 4 require considerable driver
expertise in determining when to brake for the run-in
after the_period of acceleration. In practice drivers
coast to make sure 'of not over-shooting the stop point in
the platform. (This is analogous to the problem of covering
a given distance in minimum time, see lemma 1, Appendix)

3.4 Practical application of simple gueueing results
From the Appendix the expressions for queueing times

have been derived in the 'expedited connection' case as:
£n41 = (xn+un-zn}2 (8)

whilst in cases 3 and 4, the connection delay is

Xney = (%40 =20 + K, (9): ....+K) (9a)

where Kl,K2 & K2 are expressions involving the approach

speed and deceleration rate, which we have postulated to-

be random variables, reflecting the driver characteristics,

Even 1f we assume K,, K, & K, to be constants the modified

integral equations are not to the author's knowledge

‘soluble in the general case of a (GI/G/1) system adjusted

for both a connection delay and an expedited connection.
The procedure here adopted is initally to present a simple
medel using equation 4 with the understanding that in the
case of very short intervals of delay, the simple model
over-estimates the true value of delay, whilst for longer
intervals it depends on the values of K, and K2
Essentially a railway block signalling section is a
single server queue‘ged by and feeding another single
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server gueuwe. It is thus in the spirit of this paper to
allow the general formulation as (GI/G/1l) and interpret
gueue lengths of one, two or three as being trains effect-
ively walting at the outer home sigmal, but in block
signalling sections of their own. The occurrence of long
queues {(in railway terms two or more is long) is a design
feature which should not be permitted as it is likely
that because of connection type delays, the move~up time
will be censiderable for the second or third in the queue.
In this case the simple waiting time formula definitely
under-estimates the actual delay. The possibility of
restricted ocutput from the queue caused by the occupancy
of block signal;ing sections in front of the starter
signal would cause a train to be held in the platform for
lenger than the necessety passenger loading and unloading
cycle. This effect is really a consequence of a series of
queues interacting with each other; such problems of res-
tricted waiting space tend to feature in urban railways

- with short inter-station distances (% mile or less).

" In assessing the operation of a station approach at
different levels of traffic intensity the following
entities are easlly derived from the simple gueueing
model based on equation 4 {subject to the limitations
cutlined on the mathematics and the waiting space),.

{I) Mean waiting time (gueueing + service time) for
a train to pass through the stat%on section.

(II}) Mean queue length of trains at the outer home
signal, including those assumed to be queueing there,

{II1) The probability distribution of queue length
at epochs of arrival.

It is believed that these three concepts should play
an important role in capacity considerations.

4, MODELLING THE INTER-ARRIVAL HEADWAY DISTRIBUTION
Various theoretical models of time headway for
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- interval consistent with safe passage.

vehicular traffic have been Proposed and it is instructive
to consider whether road traffic headway models may be
used in the field of urban rallway operation. This ig
because a close headway‘passenger service resembles the
more familiar single-lane road traffic flow. Special
attentidn‘has been given to the Semi~Poisson model(g) of
headways which attempts to explain the zone of emptinesgs
in'front of a vehicle. This zone of emptiness has an
immediate interpretation  in a railway block Signalling
system, since it is in distance terms at least an emer-
gency stopping distance, At any point in the system the
time headways are such as to incorporate a minimum time
Thus for the
station approach of section.3 the minimum time headway for
train passage through the station defines the gsafety zone

of emptiness., At other points hetween stations the minimum

time headway is less since there i3 no stop time component.
It is as a consequence of this that the station approach
is always the bottleneck, The Semi~Poisson model has the
attractive theoretical feature of modelling the headways
which are constrainedq by the minimum safe headway, whilst
describing the free component by the Poisson process,

4,1 Some practical results

‘ From a study of time headways conducted over a five
week peried in the morning peak on a London Transport
Underground- Line, it appears that a displaced log-normal
distribution fits the data best, but that the Semi-
Poisson model also fits adequately, ‘(see fig 3). The
fitting procedure follows Buckley(g). The advantage of
the displaced log-normal is that it directly estimates
the minimum time headway possible which could of course
be calculated and used as an input to the headway model.
On balance the Semi-Poisson is preferred although it does

not incorporate a cut-off value for the minimum headway
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ossible. Another possibility is the Hyper-Erlang i
; (10) h this has not been tested.
model of Dawson , althoug -
final remark concerns the sample cumulative frequ .
ro-
function which exhibits on log-scale (fig 3) a vezzaz -
) his is interpreted to mean
nounced linear tail. T pones
ith the time headway be
trains travel in bunches w e
punches having a negative exponentia%lfistribution N blé
is the random gueues model of Miller , @ very suita
hypothesis for underground railway traffic.
4,2 Time headway models .
Several of the time headway models mentioned inné

are defined here in their probability density form.

4,2.1 Three parameter displaced models ( e
o - - -1 - (t-a (10)
Displaced (P ()7L () /8 te
Gamma/Erlang - _ o )
Displaced (t—a)’l(zﬂcz) %exp(-%(log(t-u} ul )/a(la)
Log~normal

4.2.2 Semi-Polsson models (four para?ezers)
' éamma zone (¢{3Fﬁn}'l{t/8}xdie- / . 1 use
of emptiness +(1-¢)(BA)-Kke-XtL;sP(xﬁ {z/8F " e az

(12)

A=B/{1+AB)

. 2 N
Gaussian zone '(¢/{2ﬂ02}%)exp(-{t-Ei/ZGz)
of emptiness . ;_4)(exp{sr-50?A?Nxe M N (L)

N{t)= I§2n03}'%exp(w{z—e}2/202)dz

(13)

ing processes
4.3 Modelling general gueue |
ful procedure- for efficiently solving the queuing

ons : If the

equationsg is here presented based on Smith e
generating functions of both arrival aqd serv. e L ot
distributions are always the reciprocal of a poti e
finite degree then the roots of (14) give risie 08 vem
fast procedure for calculating the steady sta

queue length distribution.

(14)
A*(=-s)B*{s) =1 v
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A*(s} and B*(s) are the Laplace transforms of arrival ang
service time distributions respectively,

note that the transform of the general Er
E, has transform F*(s) given by:

F*(s) = I(1 + o 5)"
which has k parameters g
If all the 6 are equal,
which we denote E (x*). smith (12)

of a weighted sum of y? distributi
number degrees of freedom in model

types of behaviour. This formulation is hepce character-~
!fzed by a-generating function which is always the recip-
rocal of a polynomial and therefore appli
This technique is exploited in sectio
how a queueing model of a bottleneck stat
Transport rallway is constructed from dat
the service and arrival time distribution

Analytic expressions for the expected waiting time,
the queue length probability distribution
queue length are know
Wishart(la). :

AS an example we
lang distribution

(15}
l.‘..'eK

has noted the usefulness
ons with various even
ling widely different

cable in (14).

n 5,3 in showing
ion of a Londen
& availabhle on
s.

and the expected

n for the system (GI/Em(xa)/l), sSee

In fact a wider class than x* 1s permissible

in the service pProcess by suitably adjusting the Parametexs,

. The preferred model for a railway block signalling section
is a Semi~-Poisgon inter-arrival model with a displaced
Brlang service distribution, whilst a simpler model would
‘consist of an Erlang arrival and a x?
latter case can be easily computed,

5I

service which in the

SOME PRACTICAL RESULTS $OR MEAN DELAY' AND QUEUE LENGTH
The effect of various traffic intensities on mean
waiting time ang queue .length distribution is Plotted in

fig 4. It is convenlent to adopt a standardised time scale
by making the mean headway unity and

Pr which is thus the traffic intensit
5.1 Modified queueing equations

the mean service time
Y. '
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. It is convenient to consider the Laplace tranzforms
©f theoretigal arrival and service distributions of
equation (14) in the notation of section 4.3 thus:

E 2 2

x (X )/Em(x ) (l-s/k)k[l+ps/mfn =1 (17)

E. /E_/1 !

k/Eq/ I}(l-eis/k)ljl(les/m) =1 {18)
2 218l=k Ejll’j =mp

D/E_ (x2) /1 e”% (L+ps/m™ =1 - (19)

E, (x*}/p/1 ~s/k)%

K (1~s/k) P8 =1 (20)

SB/E_(x*)/1

- -k -
{001-88) 7%+ (1-0) (1-5/2) "L (12T} (L4pym™= 1 (21

5 Where D denotes regular and Sp denotes Semi-Poisson

.2 Exgre?i;?n for expected walting time .

waiti:mi:? gives two expressions for the expected

g time,1if the service distrib
ti
(1) Bw) = -5s,7 ’ AR 12 By then

(22
:here E(w) is the expected waiting time and s; are the !

t:ots of an equation of the form of {17) - (21) such that
& real parts of Sy are negative. (If the model is E A
then there are m such root k/%m
0D s m _loo fi. If the arrival process is E
§o5 T VLT +V5T +(1-p)?) 2(1-p) (23)

a . ’ ;

n: s:j are the 'roots with strictly positive rea] parts

an Vl,v2 are the variances of the inter-~arrival ang '
service times respectively,

Koti (14)
et fah et al present a highly efficient iterative
or solving an equation of the form of (17) to (21)

;o obtain the.roots for substitution in (22) or (23)
urther the roots obtained when the service is v? enab
the procedure of Wish (13 ot e
; . art to be followed directly to
obtain the queue length distribution.
5.3 Discussion of results for mean delay

L feveral Curves representative of operating conditions
ely to be found in urban rallways are given in fig 4

k
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which have been prepared with data from the London Trans-
port Underground Railways. When considering a peak service,
jt is the traffic intensity which assumes the role of the
independent variable. The minimum headway equation (3) is
gquite adequate in defining the time taken to pass through
the section at very low traffic intensities when it is
very unlikely that there is a queue, but as traffic inten-
sity rises so the gueueing time rises, Fig 4.1 shows how
the probability of having O or 1 train in the system
varies with intensity and fig 4.2 shows what is happening
to the queuve length. We note-that the effect of greater
regularity in either service or arrival cuts down the
mean queue length éﬁd reduces the probability of queues of
length two or more. Fig 4.3 shows how the waiting time
varies with intensity at three representative levels of
irregularity in the input; in the limit, for intensities
approaching unity, waiting time and queue length tend to
the (M/M/l) system. .
8.4 Further work and applications
It would be interesting to develop the work on connec-
tion type phenomenon tdé solve the gueueing model for the
signalling directly rather than use an approximation.
However the most important aspect of the work is the case
for a stochastic view of rallway operations especially in
the case of urban passenger operations where a better
understanding of station capacity 1s needed. Finally the
steady state approach to the problem is somewhat limited,
it would be useful to know how gquickly the steady state
is reached, that is a full time dependent solution to the
problem from which it would be possible to calculate the
time needed teo recover from a long queue. (Relaxation time)
A correlation study of arrival and service processes
would complete the gueueing approach to signalling.
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.8 -E t D/E,/1 Studies, University College London., I should also like to
: O - === Eg/Eg/1 thank Mr. J G Weston of London Transport for his assist-
3 Fig 4.1 The probability of ance in the collection of the data.
+6 " © 2ero or one train in the system APPENDIX
& at epochs of arrival Lemma 1
M - Epe minimum time to cover a distance (d4+L}, the
42 4 SINTENSIT¥ distance of the outer home signal to platform stop
N - 1§ w7 »8 5L starting from rest is
e (b ’ to = {2831} (ol
s o . /é N { where ay and fl are the rates of acceleration and decel-
g - T T TS y eration, and t_ is the minimum time.
1. - Fig 4.2 Expected queue length EEEQE_E
§ *Approximating D by E Suppose the train is travelling at a speed u, when
(= 50 distant X from the station stop, then to' the +ve root
.5"§ of the gquadratic, gives the minimum time to cover X.
%’ X = (utorka, 2 ~u®/2£,)/ (14, /£))
= both lemma 1 & 2 assume no coasting.
0. 45— ; £ H & .95 Lemma 3
" e— -—Ez/G/l(input nearly random) / + It is possible for an arrival at the outer home
= B '“ES/G/l(input typical) : signal Fo run into the station earlier than a train
5 0 ""'“"'EG/G/l(input nearly / ' stopped at the signal would enter (fig.2, case 3) C?nsider
o : regular ) ' a #rain_travelling at speed u, braking before the signal,
2. -a G the service is a displaced E5 / it accelerates the instant the signal clears, then it is
E Fig 4.3 A representative result,// possible that y seconds later if:
g for a London Transport Undexr-,* uy = u2/2fl it overtakes
1 -é ground line, Sinde u¢v, then this is only true for y s v/2f;.
g e This assumes no speed differential acceleration rates.
8 - S Expressions for delay in the four cases of section 3.3
“ ,T;_ .5 - .6 7 8 9 9'5 The modifications to equation (4) are derived in terms
0. g~ : et - ” el - ©f the minimum headway eqn. (3}. Define Q =(X +U -Z ).

. In the notation of sections 2&3 :-
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Case ; 'xn+l = 0

When Q -is negative, zero delay as ‘the signal is
clear when train arrives,

2
Case 2 xn+l = K {x +U -3 )

When Q is positive, the train brakes for Q till the

signal is clear and then reaccelerates to speed v before
the braking point of the station appreocach; 1f it cannot
reach speed v, it is considered as case 3,

xn = kf (xn+Un n) (l+f1/al)/v
Case 3 ¥n+l = (Xn+Un B0+ X,

When Qn < v/fl, the train ig not halted, but cannot
approach the station at full speed v. The result follows
by application of lemma 2, from which t, is found.

el = ¥ptUp-2, + t-{(a,+d +LL/V)+%V/£1}
Where the term in brackets is the unchecked run in time
(strictly K is not independent of Q, through £, )
Case 4 xn+l (x +U z } +K2

When Qn'> v/f ' the train is halted at the outer

home signal for (Q -v/fl). The result is similar to case 3
- and follows by application of lemma 1 from which t is

defined (K is here strictly independent of Q Y.

ael = XgtU-2) + el ~{(@ 44T V) + 5y/fl}
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